Skip to main content
Log in

Ratiometric determination of hydrogen peroxide based on the size-dependent green and red fluorescence of CdTe quantum dots capped with 3-mercaptopropionic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratiometric fluorescent nanoprobe is described for the detection of H2O2. It is based on the use of a mixture of green-emitting CdTe quantum dots (GQDs) and red-emitting CdTe QDs (RQDs). The two kinds of QDs have different size and different fluorescence response towards H2O2. The ratio of the emission intensities at 606 and 510 nm (under 365 nm photoexcitation) can be used as the analytical information. Even without any chemical modification of the surface of the QDs, the probe display high sensitivity and selectivity for H2O2. The fluorescence of small QDs is more effectively quenched by H2O2. Stern-Volmer analysis showed both static and dynamic quenching to occur. The probe works well in the 10~125 μM H2O2 concentration range and has a 0.3 μM detection limit (3σ/slope).

Schematic presentation of the ratiometric fluorescent nanoprobe composed of green-emitting and red-emitting CdTe QDs. λ, I, and k are the emission wavelength, emission intensity, and quenching/enhancement coefficient, respectively. The subscript 0 and 1 present the green-emitting and red-emitting CdTe QDs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47:2873–2920

    Article  CAS  Google Scholar 

  2. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  3. Ma N, Sargent EH, Kelley SO (2009) One-step DNA programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125

    Article  CAS  Google Scholar 

  4. He H, Feng M, Hu J, Chen CX, Wang JQ, Wang XJ, Xu H, Lu JR (2012) Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots. ACS Appl Mater Interfaces 4:6362–6370

    Article  CAS  Google Scholar 

  5. Wang Y, Yan XP (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated utrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49:3324–3326

    Article  CAS  Google Scholar 

  6. Dan L, Wang HF (2013) Mn-doped ZnS quantum dot imbedded two-fragment imprinting silica for enhanced room temperature phosphorescence probing of domoic acid. Anal Chem 85:4844–4848

    Article  CAS  Google Scholar 

  7. Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354

    Article  CAS  Google Scholar 

  8. Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci 215:28–45

    Article  CAS  Google Scholar 

  9. Jiao H, Zhang L, Liang Z, Peng G, Lin H (2014) Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Microchim Acta 181:1393–1399

    Article  CAS  Google Scholar 

  10. Xia YS, Cao C, Zhu CQ (2008) Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). J Lumin 128:166–172

    Article  CAS  Google Scholar 

  11. Laferrière M, Galian RE, Maurel V, Scaiano JC (2006) Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals. Chem Commun 3:257–259

    Article  Google Scholar 

  12. Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417

    Article  CAS  Google Scholar 

  13. Marco G, Mirella T, Enrica M, Pier GP (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals. Nat Rev Mol Cell Biol 8:722–728

    Article  Google Scholar 

  14. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134

    Article  CAS  Google Scholar 

  15. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  16. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  17. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686

    Article  CAS  Google Scholar 

  18. Long LH, Evans PJ, Halliwell B (1999) Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochem Biophys Res Commun 262:605–609

    Article  CAS  Google Scholar 

  19. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133:8424–8427

    Article  CAS  Google Scholar 

  20. Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468

    Article  CAS  Google Scholar 

  21. Jing L, Kershaw SV, Li Y, Huang X, Li Y, Rogach AL, Gao M (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116:10623–10730

    Article  CAS  Google Scholar 

  22. Wang Y, Si B, Lu S, Ma X, Liu E, Fan J, Li X, Hu X (2016) Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution. Nanotechnology 27:365707

    Article  Google Scholar 

  23. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nnanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  24. Zhang J, Zhang X, Zhang JY (2009) Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113:9512–9515

    Article  CAS  Google Scholar 

  25. Masumoto Y, Sonobe K (1997) Size-dependent energy levels of CdTe quantum dots. Phys Rev B 56:9734–9737

    Article  CAS  Google Scholar 

  26. Kloepfer JA, Bradforth S, Nadeau JL (2005) Photo-physical properties of biologically compatible CdSe quantum dot structures. J Phys Chem B 109:9996–10003

    Article  CAS  Google Scholar 

  27. Yang D, Luo M, Di J, Tu Y, Yan J (2018) Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchim Acta 185:305

    Article  Google Scholar 

  28. Sharma AK, Pandey S, Sharma KH, Nerthigan Y, Khan MS, Hang DR, Wu HF (2018) Two dimensional a-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta 1015:58–65

    Article  CAS  Google Scholar 

  29. Xue B, Li K, Gu S, Zhang L, Lu J (2018) Ni foam-supported ZnO nanowires and Co3O4/NiCo2O4 double-shelled nanocages for efficient hydrogen peroxide detection. Sensors Actuat B 262:828–836

    Article  CAS  Google Scholar 

  30. Ge J, Xing K, Geng X, Hu YL, Shen XP, Zhang L, Li ZH (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Microchim Acta 185:559

    Article  Google Scholar 

  31. Chang HC, Ho JA (2015) Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem 87:10362–10367

    Article  CAS  Google Scholar 

  32. Bas SZ, Cummins C, Borah D, Ozmen M, Morris MA (2018) Electrochemical sensing of hydrogen peroxide using block copolymer templated iron oxide nanopatterns. Anal Chem 90:1122–1128

    Article  CAS  Google Scholar 

  33. Walekar LS, Hu P, Liao F, Guo X, Long M (2018) Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Microchim Acta 185:31

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21476183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, M., Ren, Y. et al. Ratiometric determination of hydrogen peroxide based on the size-dependent green and red fluorescence of CdTe quantum dots capped with 3-mercaptopropionic acid. Microchim Acta 186, 277 (2019). https://doi.org/10.1007/s00604-019-3390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3390-0

Keywords

Navigation