Skip to main content
Log in

A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric method is described for the sensitive detection of heparin (Hep). It is based on the finding that Hep can effectively inhibit the oxidase mimicking activity of cerium oxide nanoparticles (nanoceria). In the presence of Hep, the catalytic activity of nanoceria toward the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine by oxygen is strongly decreased. The inhibition mechanism is attributed to the fact that Hep is adsorbed on the surface of the nanoceria. Under optimal condition, the absorbance (measured at 652 nm) decreases with increasing Hep concentrations in the range from 30 to 700 nM. The detection limit is 20 nM. The method was applied to the determination of Hep in medical injection sample and serum sample with satisfactory results.

Schematic presentation of the inhibition of oxidase-like activity of nanoceria by heparin. This allows the sensitive detection of heparin in medical injection sample and serum sample with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bromfield SM, Wilde E, Smith DK (2013) Hep sensing and binding - taking supramolecular chemistry towards clinical applications. Chem Soc Rev 42:9184–9195

    Article  CAS  Google Scholar 

  2. Bergamaschini L, Rossi E, Vergani C, De Simoni MG (2009) Alzheimer's disease: another target for Hep therapy. Sci World J 9:891–908

    Article  CAS  Google Scholar 

  3. Crowther MA, Warkentin TE (2008) Bleeding risk and the management of bleeding complications in patients undergoing anticoagulant therapy: focus on new anticoagulant agents. Blood 111:4871–4879

    Article  CAS  Google Scholar 

  4. Murray DJ, Brosnahan WJ, Pennell B, Kapalanski D, Weiler JM, Olson J (1997) Hep detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and Hep assays. J Cardiothorac Vasc Anesth 11:24–28

    Article  CAS  Google Scholar 

  5. Thiangthum S, Heyden YV, Buchberger W, Viaene J, Prutthiwanasan B, Suntornsuk L (2014) Development and validation of an ion-exchange chromatography method for Hep and its impurities in Hep products. J Sep Sci 37:3195–3204

    Article  CAS  Google Scholar 

  6. Sanderson P, Stickney M, Leach FE, Xia QW, Yu YL, Zhang FM, Linhardt R, Amster IJ (2018) Hep/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. J Chromatogr A 1545:75–83

    Article  CAS  Google Scholar 

  7. Crespo GA, Afshar MG, Bakker E (2012) Reversible sensing of the anticoagulant Hep with protamine permselective membranes. Angew Chem Int Ed 51:12575–12578

    Article  CAS  Google Scholar 

  8. Cheng Q, He Y, Ge Y, Zhou J, Song G (2018) Ultrasensitive detection of Hep by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots. Microchim Acta 185:332

    Article  Google Scholar 

  9. Wang R, Wang X, Sun Y (2017) Aminophenol-based carbon dots with dual wavelength fluorescence emission for determination of Hep. Microchim Acta 184:187–193

    Article  CAS  Google Scholar 

  10. Huang J, Li F, Guo R, Chen Y, Wang Z, Zhao C, Zheng Y, Weng S, Lin X (2018) A signal-on ratiometric fluorometric Hep assay based on the direct interaction between amino-modified carbon dots and DNA. Microchim Acta 185:260

    Article  Google Scholar 

  11. Ding YB, Shi LL, Wei H (2015) A "turn on" fluorescent probe for Hep and its oversulfated chondroitin sulfate contaminant. Chem Sci 6:6361–6366

    Article  CAS  Google Scholar 

  12. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60

    Article  CAS  Google Scholar 

  13. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  14. Nasir M, Nawaz M, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  15. Liu B, Liu J (2017) Surface modification of nanozymes. Nano Res 10:1125–1148

    Article  CAS  Google Scholar 

  16. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  17. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  CAS  Google Scholar 

  18. Zhang Z, Zhang X, Liu B, Liu J (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139:5412–5419

    Article  CAS  Google Scholar 

  19. Hu L, Liao H, Feng L, Wang M, Fu W (2018) Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of Hep and Hepase activity. Anal Chem 90:6247–6252

    Article  CAS  Google Scholar 

  20. Liao H, Liu G, Liu Y, Li R, Fu W, Hu L (2017) Aggregation-induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb2+ detection. Chem Commun 53:10160–10163

    Article  CAS  Google Scholar 

  21. Liao H, Hu L, Zhang Y, Yu X, Liu Y, Li R (2018) A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchim Acta 185:143

    Article  Google Scholar 

  22. Wang S, Cazelles R, Liao W, Vazquez-Gonzalez M, Zoabi A, Abu-Reziq R, Willner I (2017) Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanoparticles. Nano Lett 17:2043–2048

    Article  CAS  Google Scholar 

  23. Wang X, Qin L, Zhou M, Lou Z, Wei H (2018) Nanozyme sensor arrays for detecting versatile Analytes from small molecules to proteins and cells. Anal Chem 90:11696–11702

    Article  CAS  Google Scholar 

  24. Wu J, Li S, Wei H (2018) Integrated nanozymes: facile preparation and biomedical applications. Chem Commun 54:6520–6530

    Article  CAS  Google Scholar 

  25. Wang N, Duan J, Shi W, Zhai X, Guan F, Yang L, Hou B (2018) A 3-dimensional C/CeO2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide. Microchim Acta 185:417

    Article  Google Scholar 

  26. Wang C, Tang G, Tan H (2018) Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta 185:475

    Article  Google Scholar 

  27. Cheng H, Lin S, Muhammad F, Lin Y, Wei H (2016) Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens 1:1336–1343

    Article  CAS  Google Scholar 

  28. Liu B, Huang Z, Liu J (2016) Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F detection. Nanoscale 8:13562–13567

    Article  CAS  Google Scholar 

  29. Asati A, Santra S, Kaittanis C, Nath S, Perez J (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312

    Article  CAS  Google Scholar 

  30. Kim M, Park K, Park H (2014) Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem Commun 50:9577–9580

    Article  CAS  Google Scholar 

  31. Cao G, Jiang X, Zhang H, Croley T, Yin J (2017) Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Adv 7:52210–52217

    Article  CAS  Google Scholar 

  32. Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X (2015) Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137:15882–15891

    Article  CAS  Google Scholar 

  33. Pautler R, Kelly E, Huang P, Cao J, Liu B, Liu J (2013) Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces 5:6820–6825

    Article  CAS  Google Scholar 

  34. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    Article  CAS  Google Scholar 

  35. Li J, Cheng M, Li M (2017) A luminescent and colorimetric probe based on the functionalization of gold nanoparticles by ruthenium(ii) complexes for Hep detection. Analyst 142:3733–3739

    Article  CAS  Google Scholar 

  36. You J, Liu Y, Lu C, Tseng W, Yu C (2016) Colorimetric assay of Hep in plasma based on the inhibition of oxidase-like activity of citrate-capped platinum nanoparticles. Biosens Bioelectron 92:442–448

    Article  Google Scholar 

  37. Qu F, Liu Y, Lao H, Wang Y, You J (2017) Colorimetric detection of Hep with high sensitivity based on the aggregation of gold nanoparticles induced by polymer nanoparticles. New J Chem 41:10592–10597

    Article  CAS  Google Scholar 

  38. Chen Z, Wang Z, Chen X, Xu H, Liu J (2013) Chitosan-capped gold nanoparticles for selective and colorimetric sensing of Hep. J Nanopart Res 15:1930–1939

    Article  Google Scholar 

  39. Cho Y, Ahn K (2013) Molecular interactions between charged macromolecules: colorimetric detection and quantification of Hep with a polydiacetylene liposome. J Mater Chem B 1:1182–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 21605012 and 21802012), Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0432), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600328), and Chongqing Undergraduate Training Program for Innovation and Entrepreneurship (No. 201810637022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Yuan or Lianzhe Hu.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Liu, Y., Chen, M. et al. A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles. Microchim Acta 186, 274 (2019). https://doi.org/10.1007/s00604-019-3382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3382-0

Keywords

Navigation