Skip to main content
Log in

Protamine-stabilized gold nanoclusters as a fluorescent nanoprobe for lead(II) via Pb(II)–Au(I) interaction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a one-pot approach for synthesizing highly fluorescent protamine-stabilized gold nanoclusters. These are shown to be a viable nanoprobe for selective and sensitive fluorometric determination of lead(II) via quenching of fluorescence via Pb(II)-Au(I) interaction. Under optimized conditions, fluorescence measured at excitation/emission peaks of 300/599 nm drops in the 80 nM–15 μM lead(II) concentration range. The detection limit is 24 nM, and relative standard deviations (for n = 11) at concentrations of 0.10, 4.0 and 15 μM are 1.6, 2.5 and 1.9%, respectively. The relative recoveries of added lead(II) in the water samples ranged from 97.9 ± 2.29% to 101.2 ± 1.83%.

Lead(II) ions are found to be able to selectively and sensitively quench the fluorescence of the protamine-gold nanoclusters (PRT-AuNCs). Thereby, an inexpensive, selective and sensitive lead(II) assay was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liao H, Liu G, Liu Y, Li R, Fu W, Hu L (2017) Aggregation-induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb2+ detection. Chem Commun (Camb) 53:10160–10163

    Article  CAS  Google Scholar 

  2. Lu L, Cheng H, Liu X, Xie J, Li Q, Zhou T (2015) Assessment of regional human health risks from lead contamination in Yunnan province, southwestern China. PLoS One 10:e0119562

    Article  Google Scholar 

  3. Wang XF, Xiang LP, Wang YS, Xue JH, Zhu YF, Huang YQ, Chen SH, Tang X (2016) A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Microchim Acta 183:1333–1339

    Article  CAS  Google Scholar 

  4. Ebrahimi M, Raoof JB, Ojani R (2017) Design of a novel electrochemical biosensor based on intramolecular G-quadruplex DNA for selective determination of lead(II) ions. Anal Bioanal Chem 409:4729–4739

    Article  CAS  Google Scholar 

  5. Zhang H, Wang S, Chen Z, Ge P, Jia R, Xiao E, Zeng W (2017) A turn-on fluorescent nanoprobe for lead(II) based on the aggregation of weakly associated gold(I)-glutathione nanoparticles. Microchim Acta 184:4209–4215

    Article  CAS  Google Scholar 

  6. Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM (2018) An aptamer-based colorimetric lead(II) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I. Microchim Acta 185:151–156

    Article  Google Scholar 

  7. Guo Y, Li J, Zhang X, Tang Y (2015) A sensitive biosensor with a DNAzyme for lead(II) detection based on fluorescence turn-on. Analyst 140:4642–4647

    Article  CAS  Google Scholar 

  8. Tang S, Tong P, Li H, Tang J, Zhang L (2013) Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dots tagging. Biosens Bioelectron 42:608–611

    Article  CAS  Google Scholar 

  9. Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H (2014) A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer. Anal Chim Acta 812:161–167

    Article  CAS  Google Scholar 

  10. Talio MC, Zambrano K, Kaplan M, Acosta M, Gil RA, Luconi MO, Fernandez LP (2015) New solid surface fluorescence methodology for lead traces determination using rhodamine B as fluorophore and coacervation scheme: application to lead quantification in e-cigarette refill liquids. Talanta 143:315–319

    Article  CAS  Google Scholar 

  11. Xu L, Shen X, Hong S, Wang J, Zhang Y, Wang H, Zhang J, Pei R (2015) Turn-on and label-free fluorescence detection of lead ions based on target-induced G-quadruplex formation. Chem Commun (Camb) 51:8165–8168

    Article  CAS  Google Scholar 

  12. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  Google Scholar 

  13. Tan Z, Xu H, Li G, Yang X, Choi MM (2015) Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 149:615–620

    Article  CAS  Google Scholar 

  14. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P (2018) Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90:1098–1103

    Article  CAS  Google Scholar 

  15. Peng J, Han CL, Ling J, Liu CJ, Ding ZT, Cao QE (2018) Selective fluorescence quenching of papain-Au nanoclusters by self-polymerization of dopamine. Luminescence 33:168–173

    Article  CAS  Google Scholar 

  16. Jafari M, Tashkhourian J, Absalan G (2017) Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 185:77–84

    Article  CAS  Google Scholar 

  17. Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82:9194–9200

    Article  CAS  Google Scholar 

  18. Deng HH, Wu GW, He D, Peng HP, Liu AL, Xia XH, Chen W (2015) Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst 140:7650–7656

    Article  CAS  Google Scholar 

  19. Wu YS, Huang FF, Lin YW (2013) Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl Mater Interfaces 5:1503–1509

    Article  CAS  Google Scholar 

  20. Roque A, Ponte I, Suau P (2011) Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study. BMC Struct Biol 11:14

    Article  CAS  Google Scholar 

  21. DeLong RK, Akhtar U, Sallee M, Parker B, Barber S, Zhang J, Craig M, Garrad R, Hickey AJ, Engstrom E (2009) Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials 30:6451–6459

    Article  CAS  Google Scholar 

  22. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221

    Article  CAS  Google Scholar 

  23. Lien CW, Chen YC, Chang HT, Huang CC (2013) Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 5:8227–8234

    Article  CAS  Google Scholar 

  24. Zhao Q, Chen S, Zhang L, Huang H, Zeng Y, Liu F (2014) Multiplex sensor for detection of different metal ions based on on–off of fluorescent gold nanoclusters. Anal Chim Acta 852:236–243

    Article  CAS  Google Scholar 

  25. Wang C, Wu J, Jiang K, Humphrey MG, Zhang C (2017) Stable Ag nanoclusters-based nano-sensors: rapid sonochemical synthesis and detecting Pb2+ in living cells. Sensors Actuators B Chem 238:1136–1143

    Article  CAS  Google Scholar 

  26. Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933–940

    Article  CAS  Google Scholar 

  27. Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  28. Zhu R, Zhou Y, Wang XL, Liang LP, Long YJ, Wang QL, Zhang HJ, Huang XX, Zheng HZ (2013) Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 117:127–132

    Article  CAS  Google Scholar 

  29. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941

    Article  CAS  Google Scholar 

  30. Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, Shi LF, Xiao XL (2012) A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-"turning on" mechanism. J Pharm Biomed Anal 70:362–368

    Article  CAS  Google Scholar 

  31. Huai Q, Zhang B, Sheng F, Tao Z (1995) Raman and ATR infrared studies of the conformation of metallothionein in solution. Spectrosc Lett 28:829–838

    Article  CAS  Google Scholar 

  32. Wu H, Liang J, Han H (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

  33. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  Google Scholar 

  34. Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    Article  CAS  Google Scholar 

  35. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  36. Shi X, Gu W, Zhang C, Zhao L, Peng W, Xian Y (2015) A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide. Dalton T 44:4623–4629

    Article  CAS  Google Scholar 

  37. Ding N, Cao Q, Zhao H, Yang Y, Zeng L, He Y, Xiang K, Wang G (2010) Colorimetric assay for determination of lead(II) based on its incorporation into gold nanoparticles during their synthesis. Sensors 10:11144–11155

    Article  CAS  Google Scholar 

  38. Chen YY, Chang HT, Shiang YC, Hung YL, Chiang CK, Huang CC (2009) Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem 81:9433–9439

    Article  CAS  Google Scholar 

  39. Hung YL, Hsiung TM, Chen YY, Huang CC (2010) A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta 82:516–522

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21177052), and the Science and Technology Program of Hunan Province in China (No. 2010SK3039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1.70 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YQ., Yang, LN., Wang, YS. et al. Protamine-stabilized gold nanoclusters as a fluorescent nanoprobe for lead(II) via Pb(II)–Au(I) interaction. Microchim Acta 185, 483 (2018). https://doi.org/10.1007/s00604-018-3019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3019-8

Keywords

Navigation