Skip to main content

Advertisement

Log in

A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The paper describes a voltammetric method for the quantitation of the activity of telomerase extracted from cancer cells. A thiolated single-stranded telomerase substrate primer was firstly immobilized on a gold electrode. In the presence of a mixture of telomerase and deoxynucleotide triphosphates, the primer becomes elongated and contains repetitive nucleotide sequences (TTAGGG)n. After hybridization with blocker DNA, gold nanoparticles are added and captured by the elongated single-stranded DNA. This reduces the charge transfer resistance of the gold electrode. The telomerase activity is then quantified via differential pulse voltammetry, typically at 0.12 V (vs. SCE). The method is PCR-free, rapid, and convenient. It was applied to the detection of HeLa cells via the telomerase activity of lysed cells. The detection range was from 500 to 50,000 cells/mL and the detection limit was as low as 500 cells/mL.

A telomerase substrate (TS) primer is immobilized on a gold electrode as the sensing interface to detect the activity of telomerase extracted from cancer cells. Unmodified gold nanoparticles (AuNPs) are utilized which change the electrochemical responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blackburn EH (2010) Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed 49:7405–7421

    Article  CAS  Google Scholar 

  2. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  CAS  PubMed  Google Scholar 

  3. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  CAS  PubMed  Google Scholar 

  4. Borah S, Xi LH, Zaug AJ, Powell NM, Dancik GM, Cohen SB, Costello JC, Theodorescu D, Cech TR (2015) TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347:1006–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D (2015) Cancer-associated TERT promoter mutations abrogate telomerase silencing. Elife 4:e07918

    Article  PubMed Central  Google Scholar 

  6. Wang WJ, Huang S, Li JJ, Rui K, Bi S, Zhang JR, Zhu JJ (2017) Evaluation of intracellular telomerase activity through Cascade DNA logic gates. Chem Sci 8:174–180

    Article  CAS  PubMed  Google Scholar 

  7. Wang WJ, Huang S, Li JJ, Rui K, Zhang JR, Zhu JJ (2016) Coupling a DNA-based machine with glucometer readouts for amplified detection of telomerase activity in cancer cells. Sci Rep 6:23504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herbert BS, Hochreiter AE, Wright WE, Shay JW (2006) Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat Protoc 1:1583–1590

    Article  CAS  PubMed  Google Scholar 

  9. Krupp G, Kuhne K, Tamm S, Klapper W, Heidorn K, Rott A, Parwaresch R (1997) Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust 'TRAP' assay. Nucleic Acids Res 25:919–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, Shin-Ya K, Lacroix L, Lingner J, Mergny JL (2007) Reevaluation of telomerase inhibition by Quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A 104:17347–17352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I (2004) Catalytic beacons for the detection of DNA and telomerase activity. J Am Chem Soc 126:7430–7431

    Article  CAS  PubMed  Google Scholar 

  12. Wang JS, Wu L, Ren JS, Qu XG (2014) Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy. Nanoscale 6:1661–1666

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Wang LJ, Zhang CY (2014) Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chem Commun 50:1909–1911

    Article  CAS  Google Scholar 

  14. Xu YJ, Zhang P, Wang Z, Lv SP, Ding CF (2018) Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta 185(3):198

    Article  CAS  Google Scholar 

  15. Chen CH, Wei M, Liu YJ, Xu ES, Wei W, Zhang YJ, Liu SQ (2017) Visual and Fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Microchim Acta 184:3453–3460

    Article  CAS  Google Scholar 

  16. Wu L, Wang JS, Feng LY, Ren JS, Wei WL, Qu XG (2012) Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and Electrochemiluminescence technique. Adv Mater 24:2447–2452

    Article  CAS  PubMed  Google Scholar 

  17. Yang HT, Liu AR, Wei M, Liu YJ, Lv BJ, Wei W, Zhang YJ, Liu SQ (2017) Visual, label-free telomerase activity monitor via enzymatic etching of gold Nanorods. Anal Chem 89:12094–12100

    Article  CAS  PubMed  Google Scholar 

  18. Ding CF, Li XQ, Wang W, Chen YY (2016) Fluorescence detection of telomerase activity in Cancer cell extracts based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens Bioelectron 83:102–105

    Article  CAS  PubMed  Google Scholar 

  19. Mori K, Sato S, Kodama M, Habu M, Takahashi O, Nishihara T, Tominaga K, Takenaka S (2013) Oral Cancer diagnosis via a Ferrocenylnaphthalene Diimide-based electrochemical telomerase assay. Clin Chem 59:289–295

    Article  CAS  PubMed  Google Scholar 

  20. Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ (2015) Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem 87:3019–3026

    Article  CAS  PubMed  Google Scholar 

  21. Yi Z, Wang HB, Chen K, Gao Q, Tang H, Yu RQ, Chu X (2014) A novel electrochemical biosensor for sensitive detection of telomerase activity based on structure-switching DNA. Biosens Bioelectron 53:310–315

    Article  CAS  PubMed  Google Scholar 

  22. Alizadeh-Ghodsi M, Zavari-Nematabad A, Hamishehkar H, Akbarzadeh A, Mahmoudi-Badiki T, Zarghami F, Moghaddam MP, Alipour E, Zarghami N (2016) Design and development of PCR-free highly sensitive electrochemical assay for detection of telomerase activity using Nano-based (liposomal) signal amplification platform. Biosens Bioelectron 80:426–432

    Article  CAS  PubMed  Google Scholar 

  23. Ling PH, Lei JP, Jia L, Ju HX (2016) Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity. Chem Commun 52:1226–1229

    Article  CAS  Google Scholar 

  24. Cunci L, Vargas MM, Cunci R, Gomez-Moreno R, Perez I, Baerga-Ortiz A, Gonzalez CI, Cabrera CR (2014) Real-time detection of telomerase activity in Cancer cells using a label-free electrochemical Impedimetric biosensing microchip. RSC Adv 4:52357–52365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miao P, Tang YG, Yin J (2015) MicroRNA detection based on Analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem Commun 51:15629–15632

    Article  CAS  Google Scholar 

  26. Ge ZL, Lin MH, Wang P, Pei H, Yan J, Sho JY, Huang Q, He DN, Fan CH, Zuo XL (2014) Hybridization chain reaction amplification of MicroRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86:2124–2130

    Article  CAS  PubMed  Google Scholar 

  27. Miao P, Wang BD, Han K, Tang YG (2014) Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem Commun 47:21–24

    Article  CAS  Google Scholar 

  28. Gao ZQ, Qiu ZL, Lu MH, Shu J, Tang DP (2017) Hybridization chain reaction-based colorimetric Aptasensor of adenosine 5 '-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens Bioelectron 89:1006–1012

    Article  CAS  PubMed  Google Scholar 

  29. Mykola M, Alexandre R, Mykhaylo L, Alexey S (2014) Experimental approach using covalently attached fluorophore for quantification of oligonucleotide immobilization on gold nanoparticles. Colloid Interface Sci Commun 1:35–38

    Article  CAS  Google Scholar 

  30. Miao P, Tang YG, Mao ZQ, Liu YZ (2017) Adamantane derivatives functionalized gold nanoparticles for colorimetric detection of MiRNA. Part Part Syst Charact 34:1600405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 81771929) and the National Key Instrument Developing Project of China (Grant no. ZDYZ2013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Miao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Xu, Y., Dong, W. et al. A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Microchim Acta 185, 398 (2018). https://doi.org/10.1007/s00604-018-2936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2936-x

Keywords

Navigation