Skip to main content
Log in

Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method was developed for the determination of mercuric ion Hg(II). It is based on hybridization chain reaction (HCR) and surface-enhanced Raman scattering (SERS). Raman signal DNA and streptavidin were self-assembled on gold nanoparticles as a novel signal nanoprobe (AuNP-sDNA). A thymine-mercury(II)-thymine structure was immobilized on magnetic beads (MBs). The HCR makes use of two hairpin probes that are initiated by the trigger DNA to form a stable nicked dsDNA structure (MB-TS-hDNAs). A large number of the binding sites is provided to connect the signal nanoprobe. The stable sandwich structure (MB-TS-hDNA/AuNP-sDNA) was isolated by applying a magnetic field and used in the amplification step. In this way, Hg(II) can be determined sensitively after multiple signal amplification. The SERS signal, measured at 1499 cm−1, increases linearly in the 0.1 pM to 10 nM Hg(II) concentration range, and the limit of detection is 0.08 pM (at an S/N ratio of 3). The method was applied to the detection of Hg(II) in spiked environment water samples, with recoveries ranging from 96 to 119%.

Schematic of a method based on the use of a stable T-Hg(II)-T structure and a self-assembled nanoprobe. It was applied to the trace Hg(II) detection based on hybridization chain reaction (HCR) and surface-enhanced Raman scattering (SERS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Henriques JF, Tavares PC, Correia-Dos-Santos MM, Trancoso MA, Santos-Reis M, Branquinho C (2014) Monitoring Hg and Cd contamination using red swamp crayfish (procambarus clarkii): implications for wetland food chain contamination. Water Air Soil Pollut 225:2210

    Article  CAS  Google Scholar 

  2. Jarup L (2003) Treatment of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  3. Bordajandi LR, Gómez G, Abad E, Rivera J, Del MFM, Blasco J, Gonzalez MJ (2004) Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): levels and health implications. J Agric Food Chem 52:992–1001

    Article  CAS  PubMed  Google Scholar 

  4. Gandhi N, Tang RWK, Bhavsar SP, Arhonditsis GB (2014) Fish mercury levels appear to be increasing lately: a report from 40 years of monitoring in the province of Ontario, Canada. Environ Sci Technol 48:5404–5414

    Article  CAS  PubMed  Google Scholar 

  5. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  PubMed  Google Scholar 

  6. Ariza ME, Williams MV (1999) Lead and mercury mutagenesis: type of mutation dependent upon metal concentration. J Biochem Mol Toxicol 13:107–112

    Article  CAS  PubMed  Google Scholar 

  7. Cantoni O, Christie NT, Swann A, Drath DB, Costa M (1984) Mechanism of HgCl2 cytotoxicity in cultured mammalian cells. Mol Pharm 26:360–368

    CAS  Google Scholar 

  8. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sørensen N, Dahl R, Jørgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428

    Article  CAS  PubMed  Google Scholar 

  9. Onyido I, Norris AR, Buncel E (2004) Biomolecule—mercury interactions: modalities of DNA base—mercury binding mechanisms. remediation strategies. Cheminform 104:5911–5929

    CAS  Google Scholar 

  10. Schneider L, Peleja RP, Kluczkovski A Jr, Freire GM, Marioni B, Vogt RC, Silveira RD (2012) Mercury concentration in the spectacled caiman and black caiman (alligatoridae) of the amazon: implications for human health. Arch Environ Contam Toxicol 63:270–279

    Article  CAS  PubMed  Google Scholar 

  11. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58

    Article  CAS  Google Scholar 

  12. Chen P, He C (2004) A general strategy to convert the merr family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc 126:728–729

    Article  CAS  PubMed  Google Scholar 

  13. Thomas JM, Ting R, Perrin DM (2004) High affinity DNAzyme-based ligands for transition metal cations—a prototype sensor for Hg(II). Org Biomol Chem 2:307

    Article  CAS  PubMed  Google Scholar 

  14. Matsushita M, Meijler MM, Wirsching P, Lerner RA, Janda KD (2005) A blue fluorescent antibody—cofactor sensor for mercury. Cheminform 7:4943–4946

    CAS  Google Scholar 

  15. Dirks RM, Pierce NA (2004) From the cover: triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Xu J, Su J, Xiang Y, Yuan R, Chai YQ (2012) In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Anal Chem 84:7750–7755

    Article  CAS  PubMed  Google Scholar 

  17. Dirks R, Pierce NA (2006) Hybridization chain reaction. Nat Methods 1:186–187

    Google Scholar 

  18. Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85:7689

    Article  CAS  PubMed  Google Scholar 

  20. Bukowska J, Piotrowski P (2014) Surface-enhanced Raman scattering (SERS) in bioscience: a review of application. Springer Netherlands 14:29–59

    Google Scholar 

  21. Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomater 7:142

    Article  CAS  Google Scholar 

  22. Du Y, Liu R, Liu B, Wang S, Han MY, Zhang Z (2013) Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (ii) by ligand exchange. Anal Chem 85:3160–3165

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Zeng G, Tang L, Chen J, Zhu Y, He XX (2015) Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996

    Article  CAS  PubMed  Google Scholar 

  24. Koo TW, Chan S, Sun L, Su X, Zhang J, Berlin AA (2004) Specific chemical effects on surface-enhanced Raman spectroscopy for ultra-sensitive detection of biological molecules. Appl Spectrosc 58:1401–1407

    Article  CAS  PubMed  Google Scholar 

  25. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842

    Article  CAS  PubMed  Google Scholar 

  27. Li CN, Fan PD, Liang AH, Liu QY, Jiang ZL (2012) Aptamer based determination of Pb(II) by SERS and by exploiting the reduction of HAuCl4, by H2O2, as catalyzed by graphene oxide nanoribbons. Microchim Acta 185:177

    Article  CAS  Google Scholar 

  28. Zhang CM, Gao YK, Yang N, You TT, Chen HX, Yin PG (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185:90

    Article  CAS  Google Scholar 

  29. Ma PY, Liang FH, Yang QQ, Wang D, Sun Y, Wang XH, Gao DJ, Song DQ (2014) Highly sensitive SERS probe for mercury(II) using cyclodextrin-protected silver nanoparticles functionalized with methimazole. Microchim Acta 181:975–981

    Article  CAS  Google Scholar 

  30. Li Y, Qi X, Lei C, Yue Q, Zhang S (2014) Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-Assembly of branched DNA-gold nanoaggregates. Chem Commun 50:9907–9909

    Article  CAS  Google Scholar 

  31. Chen P, Wu P, Zhang Y, Chen J, Jiang X, Zheng C, Hou X (2016) Label-free and separation-free atomic fluorescence spectrometry-based bioassay: sensitive determination of single-strand DNA, protein and double-strand DNA. Anal Chem 88:12386

    Article  CAS  PubMed  Google Scholar 

  32. Verma HN, Singh P, Chavan RM (2014) Gold nanoparticle: synthesis and characterization. Veterinary World 7:72–77

    Article  CAS  Google Scholar 

  33. Lee JS, Mirkin CA (2008) Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem 80:6805–6808

    Article  CAS  PubMed  Google Scholar 

  34. Ding C, Zhang Q, Lin JM, Zhang SS (2009) Electrochemical detection of DNA hybridization based on bio-bar code method. Biosens Bioelectron 24:3140–3143

    Article  CAS  PubMed  Google Scholar 

  35. Hu K, Lan D, Li X, Zhang S (2008) Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA−Au bio bar codes. Anal Chem 80:9124–9130

    Article  CAS  PubMed  Google Scholar 

  36. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  PubMed  Google Scholar 

  37. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  38. Li Y, Chen C, Li B, Sun J, Wang J, Gao Y, Zhao Y, Chai Z (2005) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom 21(1):94–96

    Article  Google Scholar 

  39. Hong MQ, Zeng BH, Li MY, Xu XQ, Chen GN (2018) An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury (II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim Acta 185(1):72

    Article  CAS  Google Scholar 

  40. Ravikumar A, Panneerselvam P, Radhakrishnan K (2018) Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme. Microchim Acta 185:2

    Article  CAS  Google Scholar 

  41. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem 47:3927–3931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fund Project for Shangdong Key R&D Program (2017GGX20121), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Ding.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Lv, S., Gong, Y. et al. Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles. Microchim Acta 185, 363 (2018). https://doi.org/10.1007/s00604-018-2907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2907-2

Keywords

Navigation