Skip to main content
Log in

A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an ultrasensitive method for simultaneous detection of neomycin (NEO) and quinolones antibiotics (QNS). It is based on the use of (a) two immuno-nanoprobes (a probe for NEO and a probe for QNS), (b) surface-enhanced Raman scattering (SERS) detection, and (c), a portable lateral flow assay (LFA). The two probes consist of gold nanoparticles (AuNPs) conjugated to the Raman active molecule 4-aminothiophenol (PATP), and to monoclonal antibody against NEO (NEO mAb) or against NOR (NOR mAb). Quantitative detection of NEO and QNS was realized via SERS of the PATP-coated AuNPs captured in the test line of a LFA. Under optimized condition, the visual limits of LFA are 10 ng·mL−1 for NEO and 200 ng·mL−1 for NOR, and with LODs down to 0.37 pg·mL−1 and 0.55 pg·mL−1 by using SERS. The NEO test line is not interfered by the NEO analogues gentamycin, streptomycin and tobramycin, but the NOR test line suffers from different degrees of cross-reactivity (CR) to 12 common other QNS, the CRs ranging from 1.5% to 136%. The recoveries of NEO and NOR from spiked milk samples ranged between 86% and 121%, with relative standard deviations (RSD) from 3% to 6%. The method is highly sensitive, accurate and effective. It may be applied to simultaneous detection of NEO and 8 QNS, including NOR, enoxacin, ciprofloxacin, ofloxacin, fleroxacin, marbofloxacin, enrofloxacin, and pefloxacin.

Schematic of a lateral flow assay (LFA) based on an indirect competitive model. By using two test lines, the LFA can detect the neomycin and quinolones antibiotics simultaneously. Based on the surface-enhanced Raman scattering (SERS), the LFA shows high sensitivity to antibiotics with low limit of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwarz S, Kehrenberg C, Walsh TR (2016) Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 12:431–437

    Google Scholar 

  2. Fourmy D, Recht MI, Puglisi JD (1998) Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S Rrna. J Mol Biol 277:347–362

    Article  CAS  Google Scholar 

  3. Hoshino K, Kitamura A, Morrissey I, Sato K, Kato J, Ikeda H (1994) Comparison of inhibition of Escherichia Coli topoisomerase IV by quinolones with DNA gyrase inhibition. Antimicrob Agents Chemother 38:2623–2627

    Article  CAS  Google Scholar 

  4. Greenberg LH, Momary H (1965) Audiotoxicity and nephrotoxicity due to orally administered neomycin. J Am Med Assoc 194:827–828

    Article  CAS  Google Scholar 

  5. Christ W (1990) Central nervous system toxicity of quinolones: human and animal findings. J Antimicrob Chemother 26:219–225

    Article  CAS  Google Scholar 

  6. Hildebrand H, Kempka G, Schlüter G, Schmidt M (1993) Chondrotoxicity of quinolones in vivo and in vitro. Arch Toxicol 67:411–415

    Article  CAS  Google Scholar 

  7. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  Google Scholar 

  8. Fàbrega A, Sánchezcéspedes J, Soto S, Vila J (2008) Quinolone resistance in the food chain. Int J Antimicrob Agents 31:307–315

    Article  Google Scholar 

  9. EC. Commission regulation (EU) no 508/1999 of 4 march 1999 amending annexes I to IV to council regulation (EEC) no 2377/90 laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Off J Eur Communities, 1999, 60, 22–23

  10. Salama I, Goma MS (2013) Comparative determination of miconazole, nystatin, hydrocortisone and neomycin by HPTLC/HPLC-DAD. Eur J Chem 63:29–34

    Article  Google Scholar 

  11. Gigosos PG, Revesado PR, Cadahía O, Fente CA, Vazquez BI, Franco CM, Cepeda A (2000) Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection. J Chromatogr A 871:31–36

    Article  CAS  Google Scholar 

  12. Oertel R, Renner U, Kirch W (2004) Determination of neomycin by LC-tandem mass spectrometry using hydrophilic interaction chromatography. J Pharm Biomed Anal 35:633–638

    Article  CAS  Google Scholar 

  13. Karageorgou E, Myridakis A, Stephanou EG, Samanidou V (2013) Multiresidue LC-MS/MS analysis of cephalosporins and quinolones in milk following ultrasound-assisted matrix solid-phase dispersive extraction combined with the quick, easy, cheap, effective, rugged, and safe methodology. J Sep Sci 36:2020–2027

    Article  CAS  Google Scholar 

  14. Adams E, Puelings D, Rafiee M, Roets E, Hoogmartens J (1998) Determination of netilmicin sulfate by liquid chromatography with pulsed electrochemical detection. J Chromatogr A 812:151–157

    Article  CAS  Google Scholar 

  15. Pellegrini GE, Carpico G, Coni E (2004) Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal Chim Acta 520:13–18

    Article  CAS  Google Scholar 

  16. Zhou GD, Wang F, Wang HL, Kambam S, Chen XQ (2013) Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules. Macromol. Rapid Commun 34:944–948

    Article  CAS  Google Scholar 

  17. Shtykov SN, Smirnova TD, Bylinkin YG, Kalashnikova NV, Zhemerichkin DA (2007) Determination of ciprofloxacin and enrofloxacin by the sensitized fluorescence of europium in the presence of the second ligand and micelles of anionic surfactants. J Anal Chem 62:136–140

    Article  CAS  Google Scholar 

  18. Loomans E, Van Wiltenburg J, Koets M, Van Amerongen A (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51:587–593

    Article  CAS  Google Scholar 

  19. Huet AC, Charlier C, Tittlemier SA, Singh G, Benrejeb S, Delahaut P (2006) Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J Agric Food Chem 54:2822–2827

    Article  CAS  Google Scholar 

  20. Peng J, Wang YW, Liu LQ, Kuang H, Li AK, CL X (2016) Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Adv 6:7798–7805

    Article  CAS  Google Scholar 

  21. Sheng W, Li Y, Yuan M, Wang S (2011) Enzyme-linked immunosorbent assay and colloidal gold-based immunochromatographic assay for several (fluoro)quinolones in milk. Microchim Acta 173:307–316

    Article  CAS  Google Scholar 

  22. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano- analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183:1521–1542

    Article  CAS  Google Scholar 

  23. Paek SH, Lee SH, Cho JH, Kim YS (2000) Development of rapid one-step immunochromatographic assay. Methods 22:53–60

    Article  CAS  Google Scholar 

  24. Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem C 111:17985–17988

    Article  CAS  Google Scholar 

  25. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76:2444–2447

    Article  CAS  Google Scholar 

  26. Lee M, Lee S, Lee J, Lim HW, Seong GH, Lee EK, Chang S, CH O, Choo J (2011) Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 26:2135–2141

    Article  CAS  Google Scholar 

  27. Wang YZ, Chen S, Wei C, Xu MM, Yao JL, Li Y, Deng AP, Gu RA (2014) A femtogram level competitive immunoassay of mercury (II) based on surface-enhanced Raman spectroscopy. Chem Commun 50:9112–9114

    Article  CAS  Google Scholar 

  28. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  29. Ni J, Lipert RJ, Dawson GB, Porter MD (2014) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 71:4903–4908

    Article  Google Scholar 

  30. Song CM, Zhi AM, Liu QT, Yang JF, Jia GC, Shervin J, Tang L, Hu XF, Deng RG, Xu CL, Zhang GP (2013) Rapid and sensitive detection of β-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosens Bioelectron 50:62–65

    Article  CAS  Google Scholar 

  31. She P, Chu YX, Liu CW, Guo X, Zhao K, Li JG, HJ D, Zhang X, Wang H, Deng AP (2016) A competitive immunoassay for ultrasensitive detection of Hg2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering. Anal Chim Acta 906:139–147

    Article  CAS  Google Scholar 

  32. Tian XR, Chen L, HX X, Sun MT (2012) Ascertaining genuine SERS spectra of p-aminothiophenol. RSC Adv 2:8289–8292

    Article  CAS  Google Scholar 

  33. Paek SH, Lee SH, Cho JH, Kim YS (2000) Development of rapid one-step Immunochromatographic assay. Methods 22:53–60

    Article  CAS  Google Scholar 

  34. Krug JT, Wang GD, Emory SR, Nie S (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121:9208–9214

    Article  CAS  Google Scholar 

  35. Zhu Y, Son JI, Shim YB (2010) Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors. Biosens Bioelectron 26:1002–1008

    Article  CAS  Google Scholar 

  36. Sierra-Rodero M, Fernández-Romero JM, Gómez-Hens A (2014) Determination of fluoroquinolone antibiotics by microchip capillary electrophoresis along with time-resolved sensitized luminescence of their terbium (III) complexes. Microchim Acta 181:1897–1904

    Article  CAS  Google Scholar 

  37. Xiao C, Liu J, Yang A, Zhao H, He Y (2015) Colorimetric determination of neomycin using melamine modified gold nanoparticles. Microchim Acta 182:1501–1507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science & Technology Pillar Program of “12th Five-Year Plan” (2014BAD13B05) and China Agriculture Research System (CARS-36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Hu, Zhijun Zhang or Gaiping Zhang.

Electronic supplementary material

ESM 1

(DOC 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Huang, J., Sun, Y. et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185, 84 (2018). https://doi.org/10.1007/s00604-017-2556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2556-x

Keywords

Navigation