Skip to main content
Log in

Determination of trace uric acid in serum using porous graphitic carbon nitride (g-C3N4) as a fluorescent probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Porous graphitic carbon nitride (g-C3N4) was prepared by a one-step acid etching and ultrasonication process. It is found that the strong blue fluorescence of g-C3N4 (with excitation/emission maxima at 320/400 nm) is fairly selectively quenched by uric acid (UA). The morphology and chemical structure of the nanoporous g-C3N4 were characterized by XRD, TEM and FTIR. Quenching studies and Stern-Volmer plots reveal two UA concentration ranges of different quenching efficiency. The first extends from 50 to 500 nM, the other from 0.5 to 10 μM. The limit of detection is 8.4 nM. The two quenching processes are attributed to both dynamic and static quenching. The porous g-C3N4 probes were applied to the determination of UA in (spiked) human serum and human plasma, and the results were as good as those obtained with UA standard solutions. These data illustrate that g-C3N4 can be used to selectively and sensitively quantify trace levels of UA even in a complex environment.

Porous graphite nitride carbon (g-C3N4) is shown to be a viable fluorescent probe for uric acid (UA) via both dynamic and static quenching. The electron transfer of carbon nitride is represented by the arrows; hν is the incident light; PL is the fluorescence emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao Z, Sun Y, Dong F (2014) Graphitic carbon nitride based nanocomposites: a review. Nano 7:15–37

    Google Scholar 

  2. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  3. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    Article  CAS  Google Scholar 

  4. Wang DP, Tang Y, Zhang WD (2013) A carbon nitride electrode for highly selective and sensitive determination of lead(II). Microchim Acta 180(13–14):1303–1308

    Article  CAS  Google Scholar 

  5. Guo X, Wang Y, Wu F, Ni Y, Kokot S (2016) Preparation of protonated, two-dimensional graphitic carbon nitride nanosheets by exfoliation, and their application as a fluorescent probe for trace analysis of copper(II). Microchim Acta 183(2):773–780

    Article  CAS  Google Scholar 

  6. Salehnia F, Hosseini M, Ganjali MR (2017) A fluorometric aptamer based assay for cytochrome C using fluorescent graphitic carbon nitride nanosheets [J]. Microchim Acta 184(7):2157–2163

  7. Chen HY, Ruan LW, Jiang X, Qiu LG (2015) Trace detection of nitro aromatic explosives by highly fluorescent g-C3N4 nanosheets. Analyst 140:637–643

    Article  CAS  Google Scholar 

  8. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  Google Scholar 

  9. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent "switch". Biosens Bioelectron 68:210–217

    Article  CAS  Google Scholar 

  10. Cheng N, Jiang P, Liu Q, Tian J, Asiri AM, Sun X (2014) Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for cu 2+ detection. Analyst 139:5065–5068

    Article  CAS  Google Scholar 

  11. Hu K, Zhong T, Huang Y, Chen Z, Zhao S (2015) Graphitic carbon nitride nanosheet-based multicolour fluorescent nanoprobe for multiplexed analysis of DNA. Microchim Acta 182(5–6):949–955

    Article  CAS  Google Scholar 

  12. Zhang H, Huang Q, Huang Y, Li F, Zhang W, Wei C, Chen J, Dai P, Huang L, Huang Z (2014) Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 142:125–131

    Article  CAS  Google Scholar 

  13. Zhang Y, Lei W, Xu Y, Xia X, Hao Q (2016) Simultaneous detection of dopamine and uric acid using a poly(l-lysine)/graphene oxide modified electrode. Nano 6:178–195

    Google Scholar 

  14. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51:12251–12253

    Article  CAS  Google Scholar 

  15. Niu P, Zhang L, Liu G, Cheng H (2012) Graphene-like carbon nitride Nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  16. Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C(3)N(4) and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491

    Article  CAS  Google Scholar 

  17. Guo Q, Xie Y, Wang X, Lv S, Hou T, Liu X (2003) Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem Phys Lett 380:84–87

    Article  CAS  Google Scholar 

  18. Cao Y, Wei W, Song W, Hong P, Hu X, Ying Y (2016) Monolayer g-C 3 N 4 fluorescent sensor for sensitive and selective colorimetric detection of silver ion from aqueous samples. J Fluoresc 26:739–744

    Article  CAS  Google Scholar 

  19. Groenewolt M, Antonietti M (2005) Synthesis of g-C 3 N 4 nanoparticles in mesoporous silica host matrices. Adv Mater 17:1789–1792

    Article  CAS  Google Scholar 

  20. Gao X, Jiao X, Zhang L, Zhu W, Xu X, Chen T, Ma H (2015) Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Adv 5:76963–76972

    Article  CAS  Google Scholar 

  21. Sun CL, Lee HH, Yang JM, CC W (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455

    Article  CAS  Google Scholar 

  22. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734

    Article  CAS  Google Scholar 

  23. Wang H, Lu Q, Hou Y, Liu Y, Zhang Y (2016) High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–69

    Article  CAS  Google Scholar 

  24. Lakowicz JR (1999) Principles of fluorescence spectroscopy [M]. Kluwer Academic/Plenum 78(10):456–457

  25. Lu C, Yang H, Zhu C, Chen X, Chen G (2009) A graphene platform for sensing biomolecules. Angew Chem 121:4879–4881

    Article  Google Scholar 

  26. Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    Article  CAS  Google Scholar 

  27. Kramer RA, Kainmuller EK, Flehr R, Kumke MU, Bannwarth W (2008) Quenching of the long-lived Ru (II) bathophenanthroline luminescence for the detection of supramolecular interactions. Org Biomol Chem 6:2355–2360

    Article  CAS  Google Scholar 

  28. Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86:12206–12213

    Article  CAS  Google Scholar 

  29. Xu J, Zhou Y, Liu S, Dong M, Huang C (2014) Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum(III) ions in lake water. Anal Methods 6(7):2086

    Article  CAS  Google Scholar 

  30. Mcphie P (2000) Principles of fluorescence spectroscopy, second ed. Joseph R. Lakowicz. Anal Biochem 287(2):353–354

    Article  CAS  Google Scholar 

  31. Liu S, Tian J, Lei W, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, Photoluminescent polymer Nanodots as an effective fluorescent sensing platform for label-free detection of cu(II) ions. Adv Mater 24(15):2037

    Article  CAS  Google Scholar 

  32. Piermarini S, Migliorelli D, Volpe G, Massoud R, Pierantozzi A, Cortese C, Palleschi G (2013) Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum. Sensors Actuators B Chem 179:170–174

    Article  CAS  Google Scholar 

  33. Shen J, Li Y, Su Y, Zhu Y, Jiang H, Yang X, Li C (2015) Photoluminescent carbon-nitrogen quantum dots as efficient electrocatalysts for oxygen reduction. Nano 7:2003–2008

    CAS  Google Scholar 

  34. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced Photoresponsive ultrathin graphitic-phase C3N4 Nanosheets for bioimaging. J Am Chem Soc 135(1):18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51572127, 21576138), Program for NCET-12-0629, Ph.D. Program Foundation of Ministry of Education of China (No.20133219110018), Six Major Talent Summit (XNY-011), PAPD of Jiangsu Province, and the program for Science and Technology Innovative Research Team in Universities of Jiangsu Province, China. We also thank Dr. Wanying Tang at Analysis and Test Center Nanjing University of Science and Technology for the infrared spectrum data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Lei or Qingli Hao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 14859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

YunYang, Lei, W., Xu, Y. et al. Determination of trace uric acid in serum using porous graphitic carbon nitride (g-C3N4) as a fluorescent probe. Microchim Acta 185, 39 (2018). https://doi.org/10.1007/s00604-017-2533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2533-4

Keywords

Navigation