Skip to main content
Log in

Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric method for the determination of ultra-trace levels of uranyl ion (UO2 2+) in beverage and milk. It employs (a) DNAzyme-functionalized magnetic beads (MBs) for UO2 2+ recognition, (b) horseradish peroxidase (HRP)-assisted catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) for signal generation, and (c) rolling circle amplification (RCA) for sensitivity improvement. The employment of DNAzyme-functionalized MBs facilitates the separation and collection of analyte from sample matrix. This results in more convenient operation, better selectivity and more strong resistibility to sample matrix. The RCA strategy realizes one UO2 2+-to-massive HRP effect, which strongly improves the sensitivity. The method has outstanding advantages including high sensitivity, convenient operation, strong resistibility to complex matrix, and good selectivity. It can be used to detect as low as 20.0 pg·mL−1 (74 pmol·L−1) of UO2 2+ in milk and beverage by bare eye observation. Even lower concentrations (1.0 pg·mL−1 or 3.7 pmol·L−1) of UO2 2+ can be detected with the method via UV-visible spectrometry at 650 nm. The method was applied to analyze spiked samples and gave recoveries of 98 to 105% and RSDs of ±7% (n = 6). The visual detection limit is much lower than the maximum allowable level of UO2 2+ in drinking water as defined by the Environmental Protection Agency of USA. This indicated that the method meets the requirement of simple, rapid and on-site detection of ultra-trace UO2 2+ in milk and beverage.

A colorimetric assay was developed for the rapid and visual detection of trace UO2 2+ in beverage and milk by employing (a) DNAzyme-functionalized magnetic beads (MBs) for UO2 2+ recognition, (b) horseradish peroxidase-assisted catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine sulfate (TMB) for signal generation, and (c) DNA rolling circle amplification (RCA) reaction for signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  2. Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609

    Article  CAS  Google Scholar 

  3. Yazzie M, Gamble SL, Civitello ER, Stearns DM (2003) Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 16:524–530

    Article  CAS  Google Scholar 

  4. Banday AA, Priyamvada S, Farooq N, Yusuf ANK, Khan F (2008) Effect of uranyl nitrate on enzymes of carbohydrate metabolism and brush border membrane in different kidney tissues. Food Chem Toxicol 46:2080–2088

    Article  CAS  Google Scholar 

  5. Dublineau I, Grison S, Grandcolas L, Baudelin C, Tessier C, Suhard D, Frelon S, Cossonnet C, Claraz M, Ritt J, Paquet P, Voisin P, Gourmelon P (2006) Absorption, accumulation and biological effects of depleted uranium in Peyer's patches of rats. Toxicology 227:227–239

    Article  CAS  Google Scholar 

  6. Cothern RC, Lappenbusch WL (1983) Occurrence of uranium in drinking water in the US. Health Phys 45:89–99

    Article  CAS  Google Scholar 

  7. La Touche YD, Willis DL, Dawydiak OI (1987) Absorption and biokinetics of U in rats following an oral administration of uranyl nitrate solution. Health Phys 53:147–162

    Article  Google Scholar 

  8. Wu RR, Liao LF, Li SJ, Yang YY, Xiao XL, Nie CM (2016) Ratiometric colorimetric determination of coenzyme a using gold nanoparticles and a binuclear uranyl complex as optical probes. Microchim Acta 183:715–721

    Article  CAS  Google Scholar 

  9. Miura T, Morimoto T, Hayano K, Kishimoto T (2000) Determination of uranium in water samples by ICP-AES with chelating resin disk preconcentration. Bunseki Kagaku 49:245–249

    Article  CAS  Google Scholar 

  10. Raje N, Kayasth S, Asari TPS, Gangadharan S (1994) Pre-concentration of trace elements from high-purity thorium and uranium on Chelex-100 and determination by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. Anal Chim Acta 290:371–377

    Article  CAS  Google Scholar 

  11. Baumann N, Arnold T, Geipel G, Trueman ER, Black S, Read D (2006) Detection of U(VI) on the surface of altered depleted uranium by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Sci Total Environ 366:905–909

    Article  CAS  Google Scholar 

  12. Lorber A, Karpas Z, Halicz L (1996) Flow injection method for determination of uranium in urine and serum by inductively coupled plasma mass spectrometry. Anal Chim Acta 334:295–301

    Article  CAS  Google Scholar 

  13. Zarkadas C, Karydas AG, Paradellis T (2001) Determination of uranium in human urine by total reflection X-ray fluorescence. Spectrochim Acta B At Spectrosc 56:2505–2511

    Article  Google Scholar 

  14. Yin JC, Wang YS, Zhou B, Xiao XL, Xue JH, Wang JC, Wang YS, Qian QM (2013) A wireless magnetoelastic sensor for uranyl using DNAzyme–graphene oxide and gold nanoparticles-based amplification. Sensors Actuators B Chem 188:147–155

    Article  CAS  Google Scholar 

  15. Chen XT, He LF, Wang Y, Liu B, Tang YP (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60

    Article  CAS  Google Scholar 

  16. Drogat N, Jauberty L, Chaleix V, Granet R, Guenin E, Sol V, Gloaguen V (2014) Sensing of the uranyl ion based on its complexation with bisphosphonate-capped gold nanoparticles. Mater Lett 122:208–211

    Article  CAS  Google Scholar 

  17. Lee JH, Wang ZD, Liu JW, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226

    Article  CAS  Google Scholar 

  18. Safavi A, Bagheri M (2005) A novel optical sensor for uranium determination. Anal Chim Acta 530:55–60

    Article  CAS  Google Scholar 

  19. Sessler JL, Melfi PJ, Seidel D, Gorden AEV, Ford DK, Palmer PD, Tait CD (2004) Hexaphyrin(1.0.1.0.0.0). A new colorimetric actinide sensor. Tetrahedron 60:11089–11097

    Article  CAS  Google Scholar 

  20. Zhang DY, Chen Z, Omar H, Deng L, Khashab NM (2015) Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl Mater Interfaces 7:4589–4594

    Article  CAS  Google Scholar 

  21. Zhou B, Shi LF, Wang YS, Yang HX, Xue JH, Lin L, Wang YS, Yin JC, Wang JC (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A Mol Biomol Spectrosc 110:419–424

    Article  CAS  Google Scholar 

  22. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413

    Article  CAS  Google Scholar 

  23. Zhou B, Wang YS, Yang HX, Xue JH, Wang JC, Liu SD, Liu H, Zhao H (2014) A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Microchim Acta 181:1353–1360

    Article  CAS  Google Scholar 

  24. Zhang HY, Cheng X, Chen L, Mo F, Xu LJ, Fu FF (2017) Magnetic beads-based DNA hybridization chain reaction amplification and DNAzyme recognition for colorimetric detection of uranyl ion in seafood. Anal Chim Acta 956:63–69

    Article  CAS  Google Scholar 

  25. Zhang HY, Lin L, Zeng XX, Ruan YJ, Wu YN, Lin MG, He Y, Fu FF (2015) Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens Bioelectron 78:73–78

    Article  CAS  Google Scholar 

  26. Banér J, Nilsson M, Mendelhartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  Google Scholar 

  27. Zhou L, Ou LJ, Chu X, Shen GL, Yu RQ (2007) Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem 79:7492–7500

    Article  CAS  Google Scholar 

  28. Cheng W, Yan F, Ding FL, Ju HX, Yin YB (2010) Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem 82:3337–3342

    Article  CAS  Google Scholar 

  29. Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056–2061

    Article  CAS  Google Scholar 

  30. Brown AK, Liu JW, He Y, Lu Y (2009) Biochemical characterization of a uranyl ion-specific DNAzyme. Chembiochem 10:486–492

    Article  CAS  Google Scholar 

  31. Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67:348–353

    Article  CAS  Google Scholar 

  32. Li MH, Wang YS, Cao JX, Chen SH, Tang X, Wang XF, Zhu YF, Huang YQ (2015) Ultrasensitive detection of uranyl by graphene oxide-based back-ground reduction and RCDzyme-based enzyme strand recycling signal amplification. Biosens Bioelectron 72:294–299

    Article  CAS  Google Scholar 

  33. Xiao SJ, Zuo J, Zhu ZQ, Ouyang YZ, Zhang XL, Chen HW, Zhang L (2015) Highly sensitive DNAzyme sensor for selective detection of trace uranium in ore and natural water samples. Sensors Actuators B Chem 210:656–660

    Article  CAS  Google Scholar 

  34. Zhang HY, Ruan YJ, Lin L, Lin MG, Zeng XX, Xi ZM, Fu FF (2015) A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme. Spectrochim Acta A Mol Biomol Spectrosc 146:1–6

    Article  CAS  Google Scholar 

  35. Yun W, Cai DZ, Jiang JL, Wang XF, Liao JS, Zhang PC, Sang G (2016) An ultrasensitive electrochemical biosensor for uranyl detection based on DNAzyme and target-catalyzed hairpin assembly. Microchim Acta 183:1425–1432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of NSFC (21677034, 21377025), Fujian Provincial Department of Science and Technology (2016Y0005, 2016J01385), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-15R11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongning Wu or FengFu Fu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Yu, X., Chen, L. et al. Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification. Microchim Acta 184, 4259–4267 (2017). https://doi.org/10.1007/s00604-017-2472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2472-0

Keywords

Navigation