Skip to main content
Log in

Detection of the M268T Angiotensinogen A3B2 mutation gene based on screen-printed electrodes modified with a nanocomposite: application to human genomic samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

An Erratum to this article was published on 09 November 2015

Abstract

We report on a stable and uniform nanocomposite (NC) as an enhancing element on the surface of a screen printed electrode for the detection of the M268T mutation of Angiotensinogen gene by DNA hybridization and DNA synthesis. This NC consists of multiwalled carbon nanotubes, pyrenebutyric acid (PBA) and chitosan. Two kinds of DNA biosensors were constructed by covalently coupling amino modified oligonucleotides to the carboxylic groups of PBA. Methylene Blue (MB) was employed as an electroactive probe for the detection of DNA. The two DNA biosensors were applied to detect the complementary sequence by differential pulse voltammetry. The results suggested that the peak currents of MB on the two biosensors are linearly related to the logarithm of the concentrations of target DNA in the 1.0 aM to 10 nM and in the 1 aM to 0.1 nM ranges, with detection limits of 0.11 and 0.24 aM for normal and mutant DNA, respectively. The selectivity experiment also showed the biosensors to be able to distinguish between target DNA and non-complementary sequences, and between normal homozygote, mutant homozygote and heterozygote. The biosensor was applied to quantify the products of PCR amplification of the Angiotensinogen gene (that is related to Atherosclerosis) extracted from human blood samples and gave satisfactory results. We expect this scheme to possess potential application in the detection of other genes.

A screen-printed electrode (SPE) was modified with a nanocomposite in order to detect the M268T angiotensin mutation gene by an electrochemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Lusis AJ (2012) Genetics of atherosclerosis. Trends Genet 28:267–275

    Article  CAS  Google Scholar 

  2. Mak S, Sun H, Acevedo F et al (2010) Differential expression of genes in the calcium-signaling pathway underlies lesion development in the {LDb} mouse model of atherosclerosis. Atherosclerosis 213:40–51

    Article  CAS  Google Scholar 

  3. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 161:865–891

    Article  Google Scholar 

  4. He L, Zhang Y, Liu S et al (2014) A nanocomposite consisting of plasma-polymerized propargylamine and graphene for use in DNA sensing. Microchim Acta 181:1981–1989

    Article  CAS  Google Scholar 

  5. Mazloum-Ardakani M, Ahmadi R, Heidari MM, Sheikh-Mohseni MA (2014) Electrochemical detection of the MT-ND6 gene and its enzymatic digestion: application in human genomic sample. Anal Biochem 455:60–64

    Article  CAS  Google Scholar 

  6. Mazloum-Ardakani M, Khoshroo A, Hosseinzadeh L (2014) Application of graphene to modified ionic liquid graphite composite and its enhanced electrochemical catalysis properties for levodopa oxidation. Sensors Actuators B Chem 204:282–288

    Article  CAS  Google Scholar 

  7. Mazloum-Ardakani M, Khoshroo A (2014) Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin. Electrochim Acta 130:634–641

    Article  CAS  Google Scholar 

  8. Mazloum-Ardakani M, Khoshroo A (2014) High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J Electroanal Chem 717–718:17–23

    Article  Google Scholar 

  9. Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z (2014) Two kinds of electrochemical immunoassays for the tumor necrosis factor α in human serum using screen-printed graphite electrodes modified with poly (anthranilic acid). Microchim Acta 161:917–924

    Article  Google Scholar 

  10. Zhang Y, Zhang K, Ma H (2009) Electrochemical {DNA} biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. Anal Biochem 387:13–19

    Article  CAS  Google Scholar 

  11. Cao X (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181:1133–1141

    Article  CAS  Google Scholar 

  12. Mazloum-Ardakani M, Khoshroo A (2013) Nano composite system based on coumarin derivative–titanium dioxide nanoparticles and ionic liquid: determination of levodopa and carbidopa in human serum and pharmaceutical formulations. Anal Chim Acta 798:25–32

    Article  CAS  Google Scholar 

  13. Mazloum-Ardakani M, Khoshroo A (2014) High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/Ionic liquid: determination of some catecholamines. Electrochem Commun 42:9–12

    Article  CAS  Google Scholar 

  14. Yang X, Feng B, He X et al (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180:935–956

    Article  CAS  Google Scholar 

  15. Zhang M, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050

    Article  CAS  Google Scholar 

  16. Zhao G, Zhan X (2010) Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite. Electrochim Acta 55:2466–2471

    Article  CAS  Google Scholar 

  17. García-González R, Costa-García A, Fernández-Abedul MT (2014) Methylene blue covalently attached to single stranded {DNA} as electroactive label for potential bioassays. Sensors Actuators B Chem 191:784–790

    Article  Google Scholar 

  18. Sun W, Zhang Y, Ju X et al (2012) Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Anal Chim Acta 752:39–44

    Article  CAS  Google Scholar 

  19. Wang Y, Zhou A (2007) Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. J Photochem Photobiol A Chem 190:121–127

    Article  CAS  Google Scholar 

  20. Pan D, Zuo X, Wan Y et al (2007) Electrochemical interrogation of interactions between surface-confined DNA and methylene blue. Sensors 7:2671–2680

    Article  CAS  Google Scholar 

  21. Farjami E, Clima L, Gothelf KV, Ferapontova EE (2010) DNA interactions with a methylene blue redox indicator depend on the DNA length and are sequence specific. Analyst 135:1443–1448

    Article  CAS  Google Scholar 

  22. Rohs R, Sklenar H, Lavery R, Röder B (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc 122:2860–2866

    Article  CAS  Google Scholar 

  23. Lubin AA, Lai RY, Baker BR et al (2006) Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem 78:5671–5677

    Article  CAS  Google Scholar 

  24. Pänke O, Kirbs A, Lisdat F (2007) Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosens Bioelectron 22:2656–2662

    Article  Google Scholar 

  25. Ozkan D, Kara P, Kerman K et al (2002) {DNA} and {PNA} sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry 58:119–126

    Article  CAS  Google Scholar 

  26. Gao H, Qi X, Chen Y, Sun W (2011) Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode. Anal Chim Acta 704:133–138

    Article  CAS  Google Scholar 

  27. Katz E, Willner I (2004) Biomolecule‐functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104

    Article  CAS  Google Scholar 

  28. Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810

    Article  CAS  Google Scholar 

  29. McQueen EW, Goldsmith JI (2009) Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes. J Am Chem Soc 131:17554–17556

    Article  CAS  Google Scholar 

  30. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  31. Qian L, Yang X (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68:721–727

    Article  CAS  Google Scholar 

  32. Truong LTN, Chikae M, Ukita Y, Takamura Y (2011) Labelless impedance immunosensor based on polypyrrole – pyrolecarboxylic acid copolymer for hCG detection. Talanta 85:2576–2580

    Article  CAS  Google Scholar 

  33. Garcinuño B, Ojeda I, Moreno-Guzmán M et al (2014) Amperometric immunosensor for the determination of ceruloplasmin in human serum and urine based on covalent binding to carbon nanotubes-modified screen-printed electrodes. Talanta 118:61–67

    Article  Google Scholar 

  34. Rodríguez MC, Rivas GA (2009) Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–216

    Article  Google Scholar 

  35. Kirby R, Cho EJ, Gehrke B et al (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075

    Article  CAS  Google Scholar 

  36. Primrose SB, Saunders GC, Parkes HC (1999) Analytical molecular biology: quality and validation. Royal Soc Chem

  37. Zhang X, Gao F, Cai X et al (2013) Application of graphene–pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a {DNA} biosensor. Mater Sci Eng C 33:3851–3857

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  39. Liu Y, Zhou Q, Revzin A (2013) An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 138:4321–4326

    Article  CAS  Google Scholar 

  40. Benvidi A, Rajabzadeh N, Zahedi HM et al (2015) Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode. Talanta 137:80–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Iran National Science Foundation (INSF), Yazd University Research Council and the IUT Research Council and Excellence in Sensors for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum-Ardakani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloum-Ardakani, M., Hosseinzadeh, L. & Heidari, M.M. Detection of the M268T Angiotensinogen A3B2 mutation gene based on screen-printed electrodes modified with a nanocomposite: application to human genomic samples. Microchim Acta 183, 219–227 (2016). https://doi.org/10.1007/s00604-015-1616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1616-3

Keywords

Navigation