Skip to main content
Log in

Preconcentration of mercury(II) using a thiol-functionalized metal-organic framework nanocomposite as a sorbent

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g−1 and 0.273 L mg−1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL−1 of Hg(II), and the relative standard deviation is <7.2 % (for n = 3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.

Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Idris AS, Harvey SR, Gibson LT (2011) Selective extraction of mercury(II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. J Hazard Mater 193:171–176

    Article  CAS  Google Scholar 

  2. Faraji M, Yamini Y, Rezaee M (2010) Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry. Talanta 81:831–836

    Article  CAS  Google Scholar 

  3. Cossa D, Sanjuan J, Cloud J, Stockwell PB, Toms WT (1995) Automated technique for mercury determination at sub-nanogram per litre levels in natural waters. J Anal Spectrom 10:287–291

    Article  CAS  Google Scholar 

  4. Dakova I, Karadjova I, Georgieva V, Georgiev G (2009) Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta 78:523–529

    Article  CAS  Google Scholar 

  5. Zhai Y, Duan S, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchim Acta 169:353–360

    Article  CAS  Google Scholar 

  6. Li G, Zhao Z, Liu J, Jiang G (2011) Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J Hazard Mater 192:277–283

    CAS  Google Scholar 

  7. Tuzen M, Soylak M (2005) Mercury contamination in mushroom samples from Tokat, Turkey. Bull Environ Contam Toxicol 74:968–972

    Article  CAS  Google Scholar 

  8. Baghdadi M, Shemirani F (2008) Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal Chim Acta 613:56–63

    Article  CAS  Google Scholar 

  9. Bryce DW, Izquierdo A, Luque de Castro MD (1996) Continuous microwave assisted pervaporation/atomic fluorescence detection: an approach for speciation in solid samples. Anal Chim Acta 324:69–75

    Article  CAS  Google Scholar 

  10. de Wuilloud JCA, Wuilloud RG, Silva MF, Olsina RA, Martinez LD (2002) Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry. Spectrochim Acta Part B 57:365–374

    Article  Google Scholar 

  11. Chen J, Chen H, Jin X, Chen H (2009) Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta 77:1381–1387

    Article  CAS  Google Scholar 

  12. Karadjova I, Arpadjan S, Cvetkovic J, Stafilov T (2004) Sensitive method for trace determination of Mercury in wines using electrothermal atomic absorption spectrometry. Microchim Acta 147:39–43

    Article  CAS  Google Scholar 

  13. Leyva D, Esteˇıvez J, Montero A, Pupo I (2007) Sub-ppm determination of Hg and Cr in water: Cr speciation. X-Ray Spectrom 36:355–360

    Article  CAS  Google Scholar 

  14. Hosseini-Bandegharaei A, Hosseini MS, Jalalabadi Y, Sarwghadi M, Nedaie M, Taherian A, Ghaznavi A, Eftekhari A (2011) Removal of Hg(II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). Chem Eng J 168:1163–1173

    Article  CAS  Google Scholar 

  15. Horvat M, Liang L, Bloom NS (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples, Part II: water. Anal Chim Acta 282:153–168

    Article  CAS  Google Scholar 

  16. Bic N, Sungur S, Gazi M, Tan N (2003) Selective liquid–liquid extraction of Mercuric ions by octyl methane sulfonamide. Sep Sci Technol 38:201–217

    Article  Google Scholar 

  17. Doula MK (2009) Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res 43:3659–3672

    Article  CAS  Google Scholar 

  18. Ebrahimzadeh H, Asgharinezhad AA, Tavassoli N, Sadeghi O, Amini MM, Kamarei F (2012) Separation and spectrophotometric determination of very low levels of Cr(VI) in water samples by novel pyridine-functionalized mesoporous silica. Int J Environ Anal Chem 92:509–521

    Article  CAS  Google Scholar 

  19. Sepehrian H, Waqif-Husain S, Ghannadi-Maragheh M (2009) Development of thiolfunctionalized mesoporous silicate MCM-41 as a modified sorbent and its use in chromatographic separation of metal ions from aqueous nuclear waste. Chromatographia 70:277–280

    Article  CAS  Google Scholar 

  20. Liu AM, Hidajat K, Kawi S, Zhao DY (2000) A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem Commun 1145–1146

  21. Vieira EFS, Simoni JD, Airoldi C (1997) Interaction of cations with SH-modified silica gel: thermochemical study through calorimetric titration and direct extent of reaction determination. J Mater Chem 7:2249–2252

    Article  CAS  Google Scholar 

  22. Ke F, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43

    Article  CAS  Google Scholar 

  23. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  24. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  25. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180:589–597

    Article  CAS  Google Scholar 

  26. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  27. Hu YH, Zhang L (2010) Hydrogen storage in metal-organic frameworks. Adv Mater 22:E117–E130

    Article  CAS  Google Scholar 

  28. Qiu LG, Li ZQ, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 3642–3644

  29. Koh K, Wong-Foy AG, Matzger AJ (2009) A porous coordination copolymer with over 5000 m2/g BET surface area. J Am Chem Soc 131:4184–4185

    Article  CAS  Google Scholar 

  30. Wang ZQ, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329

    Article  CAS  Google Scholar 

  31. Ke F, Yuan Y-P, Qiu L-G, Shen Y-H, Xie A-J, Zhu J-F, Tianc X-Y, Zhang L-D (2011) Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J Mater Chem 21:3843–3848

    Article  CAS  Google Scholar 

  32. Yilmaz AB (2003) Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay. Turk Environ Res 92:277–281

    Article  CAS  Google Scholar 

  33. Ebrahimzadeh H, Molaei K, Asgharinezhad AA, Shekari N, Dehghani Z (2013) Molecularly imprinted nano particles combined with miniaturized homogenous liquid-liquid extraction for the selective extraction of loratadine in plasma and urine samples followed by HPLC-PDA detection. Anal Chim Acta 767:155–162

    Article  CAS  Google Scholar 

  34. Aharoni A, Ungarish M (1972) Kinetics of activated chemisorptions-part 2. Theoretical models. J Chem Soc Faraday Trans 73:456–464

    Article  Google Scholar 

  35. Huston ND, Yang RT (1997) Theoretical basis for the Dubinin–Radushkevitch (D–R) adsorption isotherm equation. Adsorption 3:189–195

    Article  Google Scholar 

  36. Mohan D, Gupta VK, Srivastava SK, Chander S (2001) Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloid Surf A 177:169–181

    Article  CAS  Google Scholar 

  37. Zhai Y, Chang X, Cui Y, Lia N, Lai S (2006) Selective determination of trace mercury(II) after preconcentration with 4-(2-pyridylazo)-resorcinol-modified nanometer-sized SiO2 particles from sample solutions. Microchim Acta 154:253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank for the financial support from North Tehran Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Reza Sohrabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohrabi, M.R. Preconcentration of mercury(II) using a thiol-functionalized metal-organic framework nanocomposite as a sorbent. Microchim Acta 181, 435–444 (2014). https://doi.org/10.1007/s00604-013-1133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1133-1

Keywords

Navigation