Skip to main content

Advertisement

Log in

Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers.

Key aspects of the biosensor: 1) mixed SAM formation, 2) immobilisation of lectin & blocking and 3) a glycoprotein recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cunningham S, Gerlach JQ, Kane M, Joshi L (2010) Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst 135:2471–2480

    Article  CAS  Google Scholar 

  2. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  Google Scholar 

  3. Wu C, Wong C (2011) Chemistry and glycobiology. Chem Commun 47:6201–6207

    Article  CAS  Google Scholar 

  4. Katrlík J, Švitel J, Gemeiner P, Kožár T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418, and references cited therein

    Google Scholar 

  5. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163

    Article  CAS  Google Scholar 

  6. Bertok T, Katrlik J, Gemeiner P, Tkac J (2012) Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta, in press, doi: 10.1007/s00604-012-0876-4 and references cited therein

  7. Kolarich D, Lepenies B, Seeberger HP (2011) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16:214–220

    Article  Google Scholar 

  8. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103

    Article  CAS  Google Scholar 

  9. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475:110–113

    Article  CAS  Google Scholar 

  10. van Bueren JJL, Rispens T, Verploegen S, Van der Palen-Merkus T, Stapel S et al (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody Fc domains. Nature Biotechnol 29:574–576

    Article  Google Scholar 

  11. Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38:1333–1336

    Article  CAS  Google Scholar 

  12. Hirabayashi J, Kuno A, Tateno H (2011) Lectin-based structural glycomics: a practical approach to complex glycans. Electrophoresis 32:1118–1128

    Article  CAS  Google Scholar 

  13. Mislovičová D, Katrlík J, Paulovičová E, Gemeiner P, Tkac J (2012) Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids Surf B: Biointerf 94:163–169

    Article  Google Scholar 

  14. Gemeiner P, Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V et al (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15, and references cited therein

    Article  CAS  Google Scholar 

  15. Zeng X, Andrade CAS, Oliveira MDL, Sun X-L (2012) Carbohydrate-protein interactions and their biosensing applications. Anal Bioanal Chem 402:3161–3176

    Article  CAS  Google Scholar 

  16. Reuel NF, Ahn J-H, Kim J-H, Zhang J, Boghossian AA et al (2011) Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J Am Chem Soc 133:17923–17933

    Article  CAS  Google Scholar 

  17. Batchelor-McAuley C, Dickinson EJF, Rees NV, Toghill KE, Compton RG (2012) New electrochemical methods. Anal Chem 84:669–684

    Article  CAS  Google Scholar 

  18. Nagaraj VJ, Aithal S, Eaton S, Bothara M, Wiktor P, Prasad S (2010) Nanomonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine 5:369–378

    Article  CAS  Google Scholar 

  19. La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free real time impedimetric detection of carbohydrate-lectin interactions. Anal Chem 79:6959–6964

    Article  Google Scholar 

  20. Oliveira MDL, Correia MTS, Coelho LCBB, Diniz FB (2008) Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf B: Biointerf 66:13–19

    Article  CAS  Google Scholar 

  21. Oliveira MDL, Nogueira ML, Correia MTS, Coelho LCBB, Andrade CAS (2011) Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens Actuat B: Chem 155:789–795

    Article  Google Scholar 

  22. Oliveira MDL, Andrade CAS, Correia MTS, Coelho LCBB, Singh PR, Zeng X (2011) Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interf Sci 362:194–201

    Article  CAS  Google Scholar 

  23. Etxebarria J, Calvo J, Martin-Lomas M, Reichardt N-C (2012) Lectin-array blotting: Profiling protein glycosylation in complex mixtures. ACS Chem Biol 7:1729–1737

    Google Scholar 

  24. Tkac J, Davis JJ (2008) An optimised electrode pre-treatment for SAM formation on polycrystalline gold. J Electroanal Chem 621:117–120

    Article  CAS  Google Scholar 

  25. Li Y, Tian Y, Rezai T, Prakash A, Lopez MF, Chan DW, Zhang H (2011) Simultaneous analysis of glycosylated and sialylated PSA reveals differential distribution of glycosylated PSA isoforms in prostate cancer tissues. Anal Chem 83:240–245

    Article  CAS  Google Scholar 

  26. Davis JJ, Tkac J, Laurenson S, Ferrigno PK (2007) Peptide aptamers in label-free protein detection I: characterisation of the immobilised scaffold. Anal Chem 79:1089–1096

    Article  CAS  Google Scholar 

  27. Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ferrigno PK (2009) Peptide aptamers in label free protein detection II: chemical optimisation and detection of specific protein isoforms. Anal Chem 81:3314–3320

    Article  CAS  Google Scholar 

  28. Thompson R, Creavin A, O’Connell M, O’Connor B, Clarke P (2011) Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal Biochem 413:114–122

    Article  CAS  Google Scholar 

  29. Vostiar I, Tkac J, Mandenius CF (2005) Intracellular monitoring of superoxide dismutase expression in an Escherichia coli fed-batch cultivation using on-line disruption with at-line surface Plasmon resonance detection. Anal Biochem 342:152–159

    Article  CAS  Google Scholar 

  30. Imami K, Ishihama Y, Terabe S (2008) On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis-mass spectrometry. J Chromatogr A 1194:237–242

    Article  CAS  Google Scholar 

  31. Hammad LA, Derryberry DZ, Jmeian YR, Mechref Y (2010) Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column. Rapid Commun Mass Spectr 24:1565–1574

    Article  CAS  Google Scholar 

  32. Safina G, Duran IB, Alasel M, Danielsson B (2011) Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins. Talanta 84:1284–1290

    Article  CAS  Google Scholar 

  33. Liu W, Chen Y, Yan M (2008) Surface plasmon resonance imaging of limited glycoprotein samples. Analyst 133:1268–1273

    Article  CAS  Google Scholar 

  34. Pedroso MM, Watanabe AM, Roque-Barreira MC, Bueno PR, Faria RC (2008) Quartz crystal microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchem J 89:153–158

    Article  CAS  Google Scholar 

  35. Choi HW, Takahashi H, Ooya T, Takeuchi T (2011) Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination. Anal Methods 3:1366–1370

    Article  CAS  Google Scholar 

  36. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–989

    Article  CAS  Google Scholar 

  37. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2:851–856

    Article  CAS  Google Scholar 

  38. Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B: Biointerf 46:84–91

    Article  CAS  Google Scholar 

  39. Yang C, Xu C, Wang X, Hu X (2012) Quantum-dot-based biosensor for the simultaneous detection of biomarker and therapeutic drug: first steps towards the assay for quantitative pharmacology. Analyst 137:1205–1209

    Article  CAS  Google Scholar 

  40. Sugawara K, Yugami A, Kadoya T, Hosaka K (2011) Electrochemically monitoring the binding of concanavalin A and ovoalbumin. Talanta 85:425–429

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from the Slovak scientific grant agency VEGA 2/0127/10 and from the Slovak research and development agency APVV 0324-10 and APVV 0282-11 is acknowledged. This contribution/publication was the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions—stage II, supported by the Research and Development Operational Program funded by the ERDF. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 311532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertok, T., Gemeiner, P., Mikula, M. et al. Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid. Microchim Acta 180, 151–159 (2013). https://doi.org/10.1007/s00604-012-0902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0902-6

Keywords

Navigation