Skip to main content
Log in

How does vertical laminar fracture impact the decision-making in thoracolumbar fractures? A systematic scoping review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objective

Although vertical laminar fracture (VLF) is generally considered a severity marker for thoracolumbar fractures (TLFs), its exact role in decision-making has never been established. This scoping review aims to synthesize the research on VLF’s role in the decision-making of TLFs.

Methods

A systematic review was conducted following PRISMA guidelines. We searched PubMed, Scopus, and Web of Science from inception to  June 11, 2023, for studies examining the association of VLF in thoracolumbar fractures with dural lacerations, neurological deficits, radiographic parameters, or treatment outcomes. Additionally, experimental studies that analyze the biomechanics of burst fractures with VLF were included. The studies extracted key findings, objectives, and patient population. A meta-analysis was performed for the association of VLF with dural laceration and neurological deficit, and ORs were pooled with a 95% confidence interval (CI).

Results

Twenty-eight studies were included in this systematic review, encompassing 2021 patients, and twelve were included in the meta-analysis. According to the main subject of the study, the association of VLF with a dural laceration (n = 14), neurological deficit (n = 4), radiographic parameters (n = 3), thoracolumbar fracture classification (n = 2), and treatment outcome (n = 2). Seven studies with a total of 1010 patients reported a significant association between VLF and neurological deficit (OR = 7.35, 95% CI [3.97, 14.25]; P < 0.001). The pooled OR estimates for VLF predicting dural lacerations were 7.75, 95% CI [2.41, 24.87]; P < 0.001).

Conclusion

VLF may have several important diagnostic and therapeutic implications in managing TLFs. VLF may help to distinguish AO type A3 from A4 fractures. VLF may help to predict preoperatively the occurrence of dural laceration, thereby choosing the optimal surgical strategy. Clinical and biomechanical data suggest VLF may be a valuable modifier to guide the decision-making in burst fractures; however, more studies are needed to confirm its prognostic importance regarding treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable.

References

  1. Rosenthal BD, Boody BS, Jenkins TJ et al (2018) Thoracolumbar burst fractures. Clin Spine Surg 31:143–151. https://doi.org/10.1097/BSD.0000000000000634

    Article  PubMed  Google Scholar 

  2. Rometsch E, Spruit M, Härtl R et al (2017) Does operative or nonoperative treatment achieve better results in A3 and A4 spinal fractures without neurological deficit? Systematic literature review with meta-analysis. Glob Spine J 7:350–372. https://doi.org/10.1177/2192568217699202

    Article  Google Scholar 

  3. Tanasansomboon T, Kittipibul T, Limthongkul W et al (2022) Thoracolumbar burst fracture without neurological deficit: review of controversies and current evidence of treatment. World Neurosurg 162:29–35. https://doi.org/10.1016/j.wneu.2022.03.061

    Article  PubMed  Google Scholar 

  4. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831. https://doi.org/10.1097/00007632-198311000-00003

    Article  CAS  PubMed  Google Scholar 

  5. Vaccaro AR, Oner C, Kepler CK et al (2013) AO Spine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38:2028–2037. https://doi.org/10.1097/BRS.0b013e3182a8a381

    Article  PubMed  Google Scholar 

  6. Xu JX, Zhou CW, Tang Q et al (2018) The correlation between vertical laminar fractures and the severity of associated burst fractures. World Neurosurg 109:e829–e834. https://doi.org/10.1016/j.wneu.2017.10.107

    Article  PubMed  Google Scholar 

  7. Aly MM, Al-Shoaibi AM, Al-Aithan A et al (2021) Can vertical laminar fracture further discriminate fracture severity between thoracolumbar AO type A3 and A4 fractures? World Neurosurg 155:e177–e187. https://doi.org/10.1016/j.wneu.2021.08.035

    Article  PubMed  Google Scholar 

  8. Shi X, Xiang S, Dai B, He Z (2021) Association of the presence and its types of lamina fractures with posterior dural tear and neurological deficits in traumatic thoracic and lumbar burst fractures. BMC Musculoskelet Disord 22:1–6. https://doi.org/10.1186/s12891-021-04178-9

    Article  CAS  Google Scholar 

  9. Tisot RA, Avanzi O (2009) Laminar fractures as a severity marker in burst fractures of the thoracolumbar spine. J Orthop Surg (Hong Kong) 17:261–264. https://doi.org/10.1177/230949900901700302

    Article  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. https://doi.org/10.1186/S13643-021-01626-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/BMJ.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Terrin N, Schmid CH, Lau J, Olkin I (2003) Adjusting for publication bias in the presence of heterogeneity. Stat Med 22:2113–2126. https://doi.org/10.1002/SIM.1461

    Article  PubMed  Google Scholar 

  13. Aly MM, Al-Shoaibi AM, Al Fattani A, AlJuzair AH (2021) Diagnostic value of various morphological features of horizontal and vertical laminar fractures for posterior ligamentous complex injury of the thoracolumbar spine as defined by magnetic resonance imaging. World Neurosurg 153:e290–e299. https://doi.org/10.1016/J.WNEU.2021.06.109

    Article  PubMed  Google Scholar 

  14. Fernanda M, Caffaro S, Avanzi O (2012) Can the interpedicular distance reliably assess the severity of thoracolumbar burst fractures? Spine 37(4):E231–E236

    Article  Google Scholar 

  15. Keenen TL, Antony J, Benson DR (1990) Dural tears associated with lumbar burst fractures. J Orthop Trauma 4:243–245

    Article  CAS  PubMed  Google Scholar 

  16. Lee HD, Jeon CH, Moon SW et al (2020) Radiological risk factors for neurological deficits after traumatic mid and low lumbar fractures. Spine 45:1513–1523. https://doi.org/10.1097/BRS.0000000000003596

    Article  PubMed  Google Scholar 

  17. Şentürk S, Öğrenci A, Gürçay AG et al (2018) Classification of radiological changes in burst fractures. Open Access Macedonian J medical Sci 6:359–363

    Article  Google Scholar 

  18. Satoglu S, Basci O, Havitcioglu H (2015) The effect of laminae lesion on thoraco-lumbar fracture reduction. Orthop Traumatol Surg Res 101:489–494. https://doi.org/10.1016/j.otsr.2015.02.011

    Article  PubMed  Google Scholar 

  19. Kahamba JF, Rath SA, Antoniadis G et al (1998) Laminar and arch fractures with dural tear and nerve root entrapment in patients operated upon for thoracic and lumbar spine injuries. Acta Neurochir (Wien) 140:114–119. https://doi.org/10.1007/s007010050071

    Article  CAS  PubMed  Google Scholar 

  20. Martikyan AG, Grin AA, Talypov AE, Arakelyan SL (2022) Risk factors for damage to the dura mater in thoracic and lumbar spine injury. Hir Pozvonochnika 19:31–38. https://doi.org/10.14531/ss2022.1.31-38

    Article  Google Scholar 

  21. Pau A, Silvestro C, Carta F (1994) Neurochlrmgica Can lacerations of the thoraco-lumbar dura be predicted on the basis of radiological patterns of the spinal fractures? Acta Neurochir 129:186–187

    Article  CAS  PubMed  Google Scholar 

  22. Yan L, Liu Y, He B et al (2017) Clinical case-series report of traumatic cauda equina herniation. Medicine 96(14):1–5

    Article  Google Scholar 

  23. Cammisa FP, Eismont FJ, Green BA (1989) Dural laceration occurring with burst fractures and associated laminar fractures. J Bone Joint Surg Am 71:1044–1052. https://doi.org/10.2106/00004623-198971070-00011

    Article  PubMed  Google Scholar 

  24. Xu JX, Zhou CW, Wang CG et al (2018) Risk factors for dural tears in thoracic and lumbar burst fractures associated with vertical laminar fractures. Spine 43:774–779. https://doi.org/10.1097/BRS.0000000000002425

    Article  PubMed  Google Scholar 

  25. Park JK, Park JW, Cho DC, Sung JK (2011) Predictable factors for dural tears in lumbar burst fractures with vertical laminar fractures. J Korean Neurosurg Soc 50:11–16. https://doi.org/10.3340/jkns.2011.50.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoshiiwa T, Miyazaki M, Kodera R et al (2014) Predictable imaging signs of cauda equina entrapment in thoracolumbar and lumbar burst fractures with greenstick lamina fractures. Asian Spine J 8(3):339

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kareem H, Raza MH, Kontojannis V et al (2018) Case series of posterior instrumentation for repair of burst lumbar vertebral body fractures with entrapped neural elements. J Spine Surg 4:374–382. https://doi.org/10.21037/jss.2018.06.03

    Article  PubMed  PubMed Central  Google Scholar 

  28. Martikyan AG, Grin AA, Talypov AE et al (2022) Treatment strategy for patients with thoracic and lumbar spine fractures with dura mater tear. Russ J Neurosurg 24:35–42. https://doi.org/10.17650/1683-3295-2022-24-2-35-42

    Article  Google Scholar 

  29. Lee IS, Kim HJ, Lee JS et al (2009) Dural tears in spinal burst fractures: predictable MR imaging findings. Am J Neuroradiol 30:142–146. https://doi.org/10.3174/ajnr.A1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozturk C, Ersozlu S, Aydinli U (2006) Importance of greenstick lamina fractures in low lumbar burst fractures. Int Orthop 30:295–298. https://doi.org/10.1007/s00264-005-0052-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. da Chen Z, Wu J, Yao X, tao et al (2018) Comparison of Wiltse’s paraspinal approach and open book laminectomy for thoracolumbar burst fractures with greenstick lamina fractures: a randomized controlled trial. J Orthop Surg Res 13:1–9. https://doi.org/10.1186/s13018-018-0743-z

    Article  Google Scholar 

  32. Li Y, Huang M, Xiang J et al (2018) Correlation of interpedicular distance with radiographic parameters, neurologic deficit, and posterior structures injury in thoracolumbar burst fractures. World Neurosurg 118:e72–e78

    Article  PubMed  Google Scholar 

  33. Li H, Chen Q, Hu J et al (2023) The association between vertical laminar fracture and recurrent kyphosis after implant removal of Thoracolumbar burst fracture: a retrospective study. BMC Musculoskelet Disord 24:1–9. https://doi.org/10.1186/s12891-023-06139-w

    Article  Google Scholar 

  34. Sekharappa V, Sait A (2016) Simple and economical method to create thoracolumbar burst fracture in a calf spine model. Asian Spine J 10:6–13. https://doi.org/10.4184/asj.2016.10.1.6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Acar N (2017) Behavior of injured lamina in lumbar burst fractures during reduction maneuvers: a biomechanical study. Asian Spine J 11:507–512. https://doi.org/10.4184/asj.2017.11.4.507

    Article  PubMed  PubMed Central  Google Scholar 

  36. Langrana NA, Harten RD, Lin DC et al (2002) Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine 27:498–508. https://doi.org/10.1097/00007632-200203010-00010

    Article  CAS  PubMed  Google Scholar 

  37. Aly MM, Al-Shoaibi AM, Alzahrani AJ, Al Fattani A (2021) Analysis of the combined computed tomography findings improves the accuracy of computed tomography for detecting posterior ligamentous complex injury of the thoracolumbar spine as defined by magnetic resonance imaging. World Neurosurg 151:e760–e770. https://doi.org/10.1016/j.wneu.2021.04.106

    Article  PubMed  Google Scholar 

  38. Aly MM, Al-Shoaibi AM, Zahrani A, Al Fattani A (2021) Analysis of the combined computed tomography findings improves the accuracy of computed tomography for detecting posterior ligamentous complex injury of the thoracolumbar spine as defined by magnetic resonance imaging. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.04.106

    Article  PubMed  Google Scholar 

  39. Aly MM, Al-Shoaibi AM, Abduraba Ali S et al (2023) Which morphological features of facet diastasis predict thoracolumbar posterior ligamentous complex injury as defined by magnetic resonance imaging? World Neurosurg 171:e276–e285. https://doi.org/10.1016/j.wneu.2022.12.010

    Article  PubMed  Google Scholar 

  40. Kepler CK, Vaccaro AR, Koerner JD et al (2016) Reliability analysis of the AO Spine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons. Eur Spine J 25:1082–1086. https://doi.org/10.1007/s00586-015-3765-9

    Article  PubMed  Google Scholar 

  41. Schroeder GD, Kepler CK, Koerner JD et al (2016) Is there a regional difference in morphology interpretation of A3 and A4 fractures among different cultures? J Neurosurg Spine 24:332–339. https://doi.org/10.3171/2015.4.SPINE1584

    Article  PubMed  Google Scholar 

  42. Rajasekaran S, Vaccaro AR, Kanna RM et al (2017) The value of CT and MRI in the classification and surgical decision-making among spine surgeons in thoracolumbar spinal injuries. Eur Spine J 26:1463–1469. https://doi.org/10.1007/s00586-016-4623-0

    Article  PubMed  Google Scholar 

  43. Li W, Guo L (2020) Influence of different postures under vertical impact load on thoracolumbar burst fracture. Med Biol Eng Comput 58:2725–2736

    Article  PubMed  Google Scholar 

  44. Vaccaro AR, Lim MR, Hurlbert RJ et al (2006) Surgical decision making for unstable thoracolumbar spine injuries. J Spinal Disord Tech 19:1–10. https://doi.org/10.1097/01.bsd.0000180080.59559.45

    Article  PubMed  Google Scholar 

  45. Vaccaro AR, Lehman RA, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30:2325–2333. https://doi.org/10.1097/01.brs.0000182986.43345.cb

    Article  PubMed  Google Scholar 

  46. Vaccaro AR, Schroeder GD, Kepler CK et al (2016) The surgical algorithm for the AO Spine thoracolumbar spine injury classification system. Eur Spine J 25:1087–1094. https://doi.org/10.1007/s00586-015-3982-2

    Article  PubMed  Google Scholar 

  47. Tan T, Huang MS, Rutges J et al (2022) Rate and predictors of failure in the conservative management of stable thoracolumbar burst fractures: a systematic review and meta-analysis. Glob Spine J 12:1254–1266. https://doi.org/10.1177/21925682211031207

    Article  Google Scholar 

  48. Van Middendorp JJ, Audigé L, Hanson B et al (2010) What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications. Eur Spine J 19:1238–1249. https://doi.org/10.1007/s00586-010-1415-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Not applicable

Funding

No specific funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MA, OAW, AA, and MA. First author wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed M. Aly.

Ethics declarations

Conflict of interest

All authors declare no commercial associations that might pose a conflict of interest concerning the manuscript.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, M.M., Abdelwahab, O.A., Atteya, M.M.E. et al. How does vertical laminar fracture impact the decision-making in thoracolumbar fractures? A systematic scoping review and meta-analysis. Eur Spine J 33, 1556–1573 (2024). https://doi.org/10.1007/s00586-024-08140-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-024-08140-w

Keywords

Navigation