Skip to main content
Log in

Prognostic value of the systemic inflammatory index (SII) and systemic inflammatory response index (SIRI) in patients with traumatic spinal cord injury

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The overwhelming inflammatory response plays a critical role in the secondary injury cascade of traumatic spinal cord injury (tSCI). The systemic immune inflammatory index (SII) and systemic inflammatory response index (SIRI) are two novel inflammatory biomarkers. The SII was calculated based on lymphocyte, neutrophil, and platelet counts, while the SIRI was calculated based on lymphocyte, neutrophil, and monocyte counts. Their prognostic value in patients with tSCI remains unclear.

Methods

Patients with tSCI admitted within 24 h of trauma were retrospectively and consecutively enrolled. Peripheral blood samples were collected on admission. The primary outcome was American Spinal Injury Association Impairment Scale (AIS) grade conversion at discharge. Multivariable logistic regression analysis was performed to determine the relationship between SII and SIRI and AIS grade conversion. We performed receiver operating characteristic curve (ROC) analysis to assess the discriminative ability of SII, and SIRI in predicting AIS grade conversion.

Results

Among 280 included patients, 77 (27.5%) had improved AIS grade conversion at discharge. After adjustment for confounders, SII was independently associated with AIS grade conversion (per SD, odds ratio [OR], 0.68; 95% confidence interval [CI] 0.47–0.98, p = 0.040), while the association between SIRI and AIS grade conversion was insignificant (per 1 SD, OR, 0.77; 95% CI 0.55–1.08, p = 0.130). The ROC analysis revealed that the SII had the best predictive value for AIS grade conversion (area under curve: 0.608, 95% CI 0.536–0.678).

Conclusions

Increased SII was independently associated with a decreased likelihood of improved AIS grade conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ofori-Asenso R (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):56–87. https://doi.org/10.1016/s1474-4422(18)30415-0

    Article  Google Scholar 

  2. Spiess MR, Müller RM, Rupp R et al (2009) Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma 26(11):2027–2036. https://doi.org/10.1089/neu.2008.0760

    Article  PubMed  Google Scholar 

  3. Khorasanizadeh M, Yousefifard M, Eskian M et al (2019) Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. https://doi.org/10.3171/2018.10.Spine18802

    Article  PubMed  Google Scholar 

  4. Ahuja CS, Wilson JR, Nori S et al (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  5. Hellenbrand DJ, Quinn CM, Piper ZJ et al (2021) Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 18(1):284. https://doi.org/10.1186/s12974-021-02337-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Faden AI, Wu J, Stoica BA, Loane DJ (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173(4):681–691. https://doi.org/10.1111/bph.13179

    Article  PubMed  CAS  Google Scholar 

  7. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553. https://doi.org/10.1007/s13311-018-0631-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yang YL, Wu CH, Hsu PF et al (2020) Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur J Clin Invest 50(5):e13230. https://doi.org/10.1111/eci.13230

    Article  PubMed  CAS  Google Scholar 

  9. Jin Z, Wu Q, Chen S et al (2021) The associations of two novel inflammation indexes, SII and SIRI with the risks for cardiovascular diseases and all-cause mortality: a ten-year follow-up study in 85,154 individuals. J Inflamm Res 14:131–140. https://doi.org/10.2147/jir.S283835

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang C, Yu X, Wang T, Ding M, Ran L (2023) D-dimer/fibrinogen ratio for the prediction of deep venous thrombosis after traumatic spinal cord injury. Spinal Cord. https://doi.org/10.1038/s41393-023-00905-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang C, Yu X, Wang T et al (2023) Association between neutrophil percentage-to-albumin ratio and pneumonia in patients with traumatic spinal cord injury. Spinal Cord 61(2):106–110. https://doi.org/10.1038/s41393-022-00844-4

    Article  PubMed  Google Scholar 

  12. Kobayakawa K, Kumamaru H, Saiwai H et al (2014) Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Sci Transl Med 6(256):256ra137. https://doi.org/10.1126/scitranslmed.3009430

    Article  PubMed  CAS  Google Scholar 

  13. Wang C, Cui T, Li S et al (2023) The change in fibrinogen is associated with outcome in patients with acute ischemic stroke treated with endovascular thrombectomy. Neurocrit Care. https://doi.org/10.1007/s12028-023-01768-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  PubMed  CAS  Google Scholar 

  15. Jogia T, Lübstorf T, Jacobson E et al (2021) Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury. Clin Transl Med 11(1):e272. https://doi.org/10.1002/ctm2.272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fleming JC, Norenberg MD, Ramsay DA et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269. https://doi.org/10.1093/brain/awl296

    Article  PubMed  Google Scholar 

  17. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22(17):7526–7535. https://doi.org/10.1523/jneurosci.22-17-07526.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zrzavy T, Schwaiger C, Wimmer I et al (2021) Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 144(1):144–161. https://doi.org/10.1093/brain/awaa360

    Article  PubMed  Google Scholar 

  19. Ankeny DP, Popovich PG (2009) Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 158(3):1112–1121. https://doi.org/10.1016/j.neuroscience.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  20. Moalem G, Gdalyahu A, Shani Y et al (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15(3):331–345. https://doi.org/10.1006/jaut.2000.0441

    Article  PubMed  CAS  Google Scholar 

  21. Jones TB (2014) Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 258:78–90. https://doi.org/10.1016/j.expneurol.2014.03.003

    Article  PubMed  CAS  Google Scholar 

  22. Leister I, Linde LD, Vo AK et al (2021) Routine blood chemistry predicts functional recovery after traumatic spinal cord injury: a post hoc analysis. Neurorehabil Neural Repair 35(4):321–333. https://doi.org/10.1177/1545968321992328

    Article  PubMed  Google Scholar 

  23. Rawish E, Nording H, Münte T, Langer HF (2020) Platelets as mediators of neuroinflammation and thrombosis. Front Immunol 11:548631. https://doi.org/10.3389/fimmu.2020.548631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Thomas MR, Storey RF (2015) The role of platelets in inflammation. Thromb Haemost 114(3):449–458. https://doi.org/10.1160/th14-12-1067

    Article  PubMed  Google Scholar 

  25. May AE, Langer H, Seizer P et al (2007) Platelet-leukocyte interactions in inflammation and atherothrombosis. Semin Thromb Hemost 33(2):123–127. https://doi.org/10.1055/s-2007-969023

    Article  PubMed  CAS  Google Scholar 

  26. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11. https://doi.org/10.1016/j.brainres.2014.12.045

    Article  PubMed  CAS  Google Scholar 

  27. Shechter R, London A, Varol C et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113. https://doi.org/10.1371/journal.pmed.1000113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Greenhalgh AD, Zarruk JG, Healy LM et al (2018) Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol 16(10):e2005264. https://doi.org/10.1371/journal.pbio.2005264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hong LTA, Kim YM, Park HH et al (2017) An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun 8(1):533. https://doi.org/10.1038/s41467-017-00583-8

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Milich LM, Ryan CB, Lee JK (2019) The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 137(5):785–797. https://doi.org/10.1007/s00401-019-01992-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heller RA, Seelig J, Crowell HL et al (2021) Predicting neurological recovery after traumatic spinal cord injury by time-resolved analysis of monocyte subsets. Brain 144(10):3159–3174. https://doi.org/10.1093/brain/awab203

    Article  PubMed  Google Scholar 

  32. Kirshblum SC, Botticello AL, Dyson-Hudson TA et al (2016) Patterns of sacral sparing components on neurologic recovery in newly injured persons with traumatic spinal cord injury. Arch Phys Med Rehabil 97(10):1647–1655. https://doi.org/10.1016/j.apmr.2016.02.012

    Article  PubMed  Google Scholar 

  33. Kirshblum S, Snider B, Eren F, Guest J (2021) Characterizing natural recovery after traumatic spinal cord injury. J Neurotrauma 38(9):1267–1284. https://doi.org/10.1089/neu.2020.7473

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388. https://doi.org/10.1016/j.expneurol.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  35. Kwon BK, Streijger F, Fallah N et al (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34(3):567–580. https://doi.org/10.1089/neu.2016.4435

    Article  PubMed  Google Scholar 

  36. Pouw MH, Kwon BK, Verbeek MM et al (2014) Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord 52(6):428–433. https://doi.org/10.1038/sc.2014.26

    Article  PubMed  CAS  Google Scholar 

  37. Yousefifard M, Sarveazad A, Babahajian A et al (2019) Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: a systematic review. J Neurochem 149(3):317–330. https://doi.org/10.1111/jnc.14637

    Article  PubMed  CAS  Google Scholar 

  38. Zhou W, Mao Z, Wang Z et al (2023) Diagnostic and predictive value of novel inflammatory markers of the severity of acute traumatic spinal cord injury: a retrospective study. World Neurosurg 171:e349–e354. https://doi.org/10.1016/j.wneu.2022.12.015

    Article  PubMed  Google Scholar 

  39. Zhao JL, Lai ST, Du ZY et al (2020) Circulating neutrophil-to-lymphocyte ratio at admission predicts the long-term outcome in acute traumatic cervical spinal cord injury patients. BMC Musculoskelet Disord 21(1):548. https://doi.org/10.1186/s12891-020-03556-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Biglari B, Swing T, Child C et al (2015) A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: the serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord 53(7):510–514. https://doi.org/10.1038/sc.2015.28

    Article  PubMed  CAS  Google Scholar 

  41. Heller RA, Raven TF, Swing T et al (2017) CCL-2 as a possible early marker for remission after traumatic spinal cord injury. Spinal Cord 55(11):1002–1009. https://doi.org/10.1038/sc.2017.69

    Article  PubMed  CAS  Google Scholar 

  42. Moghaddam A, Sperl A, Heller R et al (2016) Elevated serum insulin-like growth factor 1 levels in patients with neurological remission after traumatic spinal cord injury. PLoS ONE 11(7):e0159764. https://doi.org/10.1371/journal.pone.0159764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Alexander JK, Popovich PG (2009) Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog Brain Res 175:125–137. https://doi.org/10.1016/s0079-6123(09)17508-8

    Article  PubMed  CAS  Google Scholar 

  44. Fehlings MG, Wilson JR, Tetreault LA et al (2017) A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate. Global Spine J 7(3 Suppl):203s-s211. https://doi.org/10.1177/2192568217703085

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chio JCT, Wang J, Surendran V et al (2021) Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier. Neurobiol Dis 148:105187. https://doi.org/10.1016/j.nbd.2020.105187

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation (82102656); China Postdoctoral Science Foundation (2022T150452,2021M692299); PostDoctor Research Project, West China Hospital, Sichuan University (2021HXBH021); and Natural Science Foundation of Sichuan Province (2023NSFSC1580, 2022NSFSC1392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilong Hao, Deren Wang or Chengqi He.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, M., Wang, T. et al. Prognostic value of the systemic inflammatory index (SII) and systemic inflammatory response index (SIRI) in patients with traumatic spinal cord injury. Eur Spine J 33, 1245–1255 (2024). https://doi.org/10.1007/s00586-023-08114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-08114-4

Keywords

Navigation