Skip to main content
Log in

Association analysis and functional study of COL6A1 single nucleotide polymorphisms in thoracic ossification of the ligamentum flavum in the Chinese Han population

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Genetic factors play a crucial role in thoracic ossification of the ligamentum flavum (TOLF). This study aimed to better understand the association between single nucleotide polymorphisms (SNP) in functional regions of the collagen VI, alpha 1 gene (COL6A1) and TOLF, and to confirm COL6A1 as a TOLF susceptibility gene.

Methods

Ten tag SNPs in COL6A1 were genotyped using the SNaPshot assay, and allele and genotype frequencies were compared between TOLF patients and control individuals. The function of SNPs associated with disease was studied. For COL6A1 promoter SNPs, the transcriptional activity of each haplotype was determined by luciferase reporter assays. For COL6A1 exonic SNPs, the effect of nucleotide substitutions on COL6A1 expression was determined by western blotting. COL6A1 mRNA expression in ligamentum flavum tissues from TOLF patients with different genotypes was examined using reverse transcription real-time PCR.

Results

Four SNPs were associated or possibly associated with TOLF, with higher pathogenic allele and genotype frequencies seen in TOLF patients compared with controls. The rs17551710/rs7671-GG/GG genotype appeared to be related to disease severity. Nucleotide substitutions at rs17551710 and rs7671 increased COL6A1 transcriptional activity and nucleotide substitutions at rs1053312 and rs13051496 increased COL6A1 protein expression. COL6A1 mRNA expression was significantly up-regulated in individuals with rs17551710/rs7671-GG/GG and rs1053312/rs13051496-AA+AG/CC genotypes compared with other genotypes.

Conclusion

SNPs in the COL6A1 promoter and exonic regions are associated with TOLF in the Chinese Han population, and lead to up-regulated COL6A1 expression. We confirmed COL6A1 as a TOLF susceptibility gene that may be involved in TOLF pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen G, Fan T, Yang X, Sun C, Fan D, Chen Z (2020) The prevalence and clinical characteristics of thoracic spinal stenosis: a systematic review. Eur Spine J 29:2164–2172. https://doi.org/10.1007/s00586-020-06520-6

    Article  PubMed  Google Scholar 

  2. Hou X, Sun C, Liu X, Liu Z, Qi Q, Guo Z, Li W, Zeng Y, Chen Z (2016) Clinical features of thoracic spinal stenosis-associated myelopathy: a retrospective analysis of 427 cases. Clin Spine Surg 29:86–89. https://doi.org/10.1097/bsd.0000000000000081

    Article  PubMed  Google Scholar 

  3. Qu X, Chen Z, Fan D, Sun C, Zeng Y (2016) MiR-132-3p regulates the osteogenic differentiation of thoracic ligamentum flavum cells by inhibiting multiple osteogenesis-related genes. Int J Mol Sci. https://doi.org/10.3390/ijms17081370

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W (2017) MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 21:1159–1170. https://doi.org/10.1111/jcmm.13047

    Article  CAS  PubMed  Google Scholar 

  5. Qu X, Chen Z, Fan D, Sun C, Zeng Y, Hou X, Ning S (2016) Notch signaling pathways in human thoracic ossification of the ligamentum flavum. J Orthop Res 34:1481–1491. https://doi.org/10.1002/jor.23303

    Article  CAS  PubMed  Google Scholar 

  6. Shunzhi Y, Zhonghai L, Ning Y (2017) Mechanical stress affects the osteogenic differentiation of human ligamentum flavum cells via the BMPSmad1 signaling pathway. Mol Med Rep 16:7692–7698. https://doi.org/10.3892/mmr.2017.7543

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Chen Z, Meng X, Li M, Zhang L, Huang A (2017) The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-alpha) in thoracic ossification of the ligamentum flavum. PLoS ONE 12:e0178986. https://doi.org/10.1371/journal.pone.0178986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang B, Chen Z, Meng X, Li M, Yang X, Zhang C (2017) iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem Biophys Res Commun 487:834–839. https://doi.org/10.1016/j.bbrc.2017.04.136

    Article  CAS  PubMed  Google Scholar 

  9. Hou XF, Fan DW, Sun CG, Chen ZQ (2014) Recombinant human bone morphogenetic protein-2-induced ossification of the ligamentum flavum in rats and the associated global modification of histone H3. J Neurosurg Spine 21:334–341. https://doi.org/10.3171/2014.4.spine13319

    Article  PubMed  Google Scholar 

  10. Park JO, Lee BH, Kang YM, Kim TH, Yoon JY, Kim H, Kwon UH, Lee KI, Lee HM, Moon SH (2013) Inflammatory cytokines induce fibrosis and ossification of human ligamentum flavum cells. J Spinal Disord Tech 26:E6-12. https://doi.org/10.1097/BSD.0b013e3182698501

    Article  PubMed  Google Scholar 

  11. Yang X, Qu X, Meng X, Li M, Fan D, Fan T, Huang AY, Chen Z, Zhang C (2018) MiR-490-3p inhibits osteogenic differentiation in thoracic ligamentum flavum cells by targeting FOXO1. Int J Biol Sci 14:1457–1465. https://doi.org/10.7150/ijbs.26686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan T, Meng X, Sun C, Yang X, Chen G, Li W, Chen Z (2020) Genome-wide DNA methylation profile analysis in thoracic ossification of the ligamentum flavum. J Cell Mol Med 24:8753–8762. https://doi.org/10.1111/jcmm.15509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Yu L, Guo S, Zhao Y (2020) Identification of the molecular mechanism and diagnostic biomarkers in the thoracic ossification of the ligamentum flavum using metabolomics and transcriptomics. BMC Mol Cell Biol 21:37. https://doi.org/10.1186/s12860-020-00280-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong D, Zhao Q, Liu W, Wang F (2019) Identification of crucial miRNAs and lncRNAs for ossification of ligamentum flavum. Mol Med Rep 20:1683–1699. https://doi.org/10.3892/mmr.2019.10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang H, Liu G, Lu S, Chen S, Jiang D, Shi H, Fei Q (2019) Epidemiology of ossification of the spinal ligaments and associated factors in the Chinese population: a cross-sectional study of 2000 consecutive individuals. BMC Musculoskel Disord 20:253. https://doi.org/10.1186/s12891-019-2569-1

    Article  Google Scholar 

  16. Kim SI, Ha KY, Lee JW, Kim YH (2018) Prevalence and related clinical factors of thoracic ossification of the ligamentum flavum-a computed tomography-based cross-sectional study. Spine J 18:551–557. https://doi.org/10.1016/j.spinee.2017.08.240

    Article  PubMed  Google Scholar 

  17. Fujimori T, Watabe T, Iwamoto Y, Hamada S, Iwasaki M, Oda T (2016) Prevalence, concomitance, and distribution of ossification of the spinal ligaments: results of whole spine CT scans in 1500 Japanese patients. Spine (Phila Pa 1976) 41:1668–1676. https://doi.org/10.1097/brs.0000000000001643

    Article  Google Scholar 

  18. Lang N, Yuan HS, Wang HL, Liao J, Li M, Guo FX, Shi S, Chen ZQ (2013) Epidemiological survey of ossification of the ligamentum flavum in thoracic spine: CT imaging observation of 993 cases. Eur Spine J 22:857–862. https://doi.org/10.1007/s00586-012-2492-8

    Article  PubMed  Google Scholar 

  19. Kong Q, Ma X, Li F, Guo Z, Qi Q, Li W, Yuan H, Wang Z, Chen Z (2007) COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 32:2834–2838. https://doi.org/10.1097/BRS.0b013e31815b761c

    Article  Google Scholar 

  20. Liu Y, Zhao Y, Chen Y, Shi G, Yuan W (2010) RUNX2 polymorphisms associated with OPLL and OLF in the Han population. Clin Orthop Relat Res 468:3333–3341. https://doi.org/10.1007/s11999-010-1511-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qu X, Chen Z, Fan D, Xiang S, Sun C, Zeng Y, Li W, Guo Z, Qi Q, Zhong W, Jiang Y (2017) Two novel BMP-2 variants identified in patients with thoracic ossification of the ligamentum flavum. Eur J Hum Genet 25:565–571. https://doi.org/10.1038/ejhg.2017.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butterfield RJ, Foley AR, Dastgir J, Asman S, Dunn DM, Zou Y, Hu Y, Donkervoort S, Flanigan KM, Swoboda KJ, Winder TL, Weiss RB, Bonnemann CG (2013) Position of glycine substitutions in the triple helix of COL6A1, COL6A2, and COL6A3 is correlated with severity and mode of inheritance in collagen VI myopathies. Hum Mutat 34:1558–1567. https://doi.org/10.1002/humu.22429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexopoulos LG, Youn I, Bonaldo P, Guilak F (2009) Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum 60:771–779. https://doi.org/10.1002/art.24293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang P, Liu X, Zhu B, Ma Y, Yong L, Teng Z, Liang C, He G, Liu X (2018) Association of IL17RC and COL6A1 genetic polymorphisms with susceptibility to ossification of the thoracic posterior longitudinal ligament in Chinese patients. J Orthop Surg Res 13:109. https://doi.org/10.1186/s13018-018-0817-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang P, Liu X, Zhu B, Ma Y, Yong L, Teng Z, Wang Y, Liang C, He G, Liu X (2018) Identification of susceptibility loci for thoracic ossification of the posterior longitudinal ligament by whole-genome sequencing. Mol Med Rep 17:2557–2564. https://doi.org/10.3892/mmr.2017.8171

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Guo J, Cai T, Zhang F, Pan S, Zhang L, Wang S, Zhou F, Diao Y, Zhao Y, Chen Z, Liu X, Chen Z, Liu Z, Sun Y, Du J (2016) Targeted next-generation sequencing reveals multiple deleterious variants in OPLL-associated genes. Sci Rep 6:26962. https://doi.org/10.1038/srep26962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim KH, Kuh SU, Park JY, Lee SJ, Park HS, Chin DK, Kim KS, Cho YE (2014) Association between BMP-2 and COL6A1 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the cervical spine in Korean patients and family members. Genet Mol Res 13:2240–2247. https://doi.org/10.4238/2014.March.31.4

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K, Yoshida K, Ikeda T, Ikegawa S, Hunt SC, Takeda J, Toh S, Harata S, Nakajima T, Inoue I (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73:812–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tsukahara S, Miyazawa N, Akagawa H, Forejtova S, Pavelka K, Tanaka T, Toh S, Tajima A, Akiyama I, Inoue I (2005) COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine (Phila Pa 1976) 30:2321–2324

    Article  Google Scholar 

  30. Kim TH, Kim TJ, Lee HS, Uhm WS, Shin ES, Na YI, Jun JB (2008) Single nucleotide polymorphism of COL6A1 in patients with ankylosing spondylitis. J Rheumatol 35:1849–1852

    Article  CAS  PubMed  Google Scholar 

  31. Chen ZQ, Sun CG (2015) Clinical guideline for treatment of symptomatic thoracic spinal stenosis. Orthop Surg 7:208–212. https://doi.org/10.1111/os.12190

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  33. Moon BJ, Kuh SU, Kim S, Kim KS, Cho YE, Chin DK (2015) Prevalence, distribution, and significance of incidental thoracic ossification of the ligamentum flavum in Korean patients with back or leg pain : MR-based cross sectional study. J Korean Neurosurg Soc 58:112–118. https://doi.org/10.3340/jkns.2015.58.2.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mori K, Kasahara T, Mimura T, Nishizawa K, Murakami Y, Matsusue Y, Imai S (2013) Prevalence, distribution, and morphology of thoracic ossification of the yellow ligament in Japanese: results of CT-based cross-sectional study. Spine (Phila Pa 1976) 38:E1216-1222. https://doi.org/10.1097/BRS.0b013e31829e018b

    Article  Google Scholar 

  35. Guo JJ, Luk KD, Karppinen J, Yang H, Cheung KM (2010) Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine (Phila Pa 1976) 35:51–56. https://doi.org/10.1097/BRS.0b013e3181b3f779

    Article  CAS  Google Scholar 

  36. Kudo H, Furukawa K, Yokoyama T, Ono A, Numasawa T, Wada K, Tanaka S, Asari T, Ueyama K, Motomura S, Toh S (2011) Genetic differences in the osteogenic differentiation potency according to the classification of ossification of the posterior longitudinal ligament of the cervical spine. Spine (Phila Pa 1976) 36:951–957. https://doi.org/10.1097/BRS.0b013e3181e9a8a6

    Article  Google Scholar 

  37. Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Yu H (2017) Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 39:135–143. https://doi.org/10.3892/ijmm.2016.2803

    Article  CAS  PubMed  Google Scholar 

  38. Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5’- and 3’-UTR-binding factors. Trends Biochem Sci 28:182–188. https://doi.org/10.1016/s0968-0004(03)00051-3

    Article  CAS  PubMed  Google Scholar 

  39. Christensen S, Coles J, Zelenski N, Furman B, Leddy H, Zauscher S, Bonaldo P, Guilak F (2012) Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice. PLoS ONE 7:e33397. https://doi.org/10.1371/journal.pone.0033397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Izu Y, Ezura Y, Mizoguchi F, Kawamata A, Nakamoto T, Nakashima K, Hayata T, Hemmi H, Bonaldo P, Noda M (2012) Type VI collagen deficiency induces osteopenia with distortion of osteoblastic cell morphology. Tissue Cell 44:1–6. https://doi.org/10.1016/j.tice.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  41. Izu Y, Ezura Y, Koch M, Birk D, Noda M (2016) Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis. Cell Tissue Res 364:623–635. https://doi.org/10.1007/s00441-015-2345-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the patients for providing blood samples and specimens. We acknowledge the assistance of Beijing Ubiolab Technology Co., Ltd (http://www.ubiolab.com/) with SNaPshot assay and Beijing TransGen Biotech Co., Ltd (http://www.transgen.com.cn/) with site-directed mutagenesis. We thank Liwen Bianji (http://www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Funding

This research was funded by National Natural Science Foundation of China, Grant Numbers: 82002326, 81772381; Natural Science Foundation of Liaoning Province, Grant Number: 2019-BS-070.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaochen Qu or Zhongqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee for Human Subjects of the Peking University Third Hospital (PUTH-REC-SOP-06-3.0-A27, #2014003).

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 79 kb)

Supplementary file2 (TIF 2573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Hou, X., Chen, Z. et al. Association analysis and functional study of COL6A1 single nucleotide polymorphisms in thoracic ossification of the ligamentum flavum in the Chinese Han population. Eur Spine J 30, 2782–2790 (2021). https://doi.org/10.1007/s00586-021-06932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06932-y

Keywords

Navigation