Skip to main content
Log in

Circumferential dynamic stabilization of the lumbar spine: a biomechanical analysis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To assess segmental angulation and mobility following implantation of the Charité artificial disc in combination with the posterior dynamic fixation device dynamic stabilization system (DSS) and the interspinous spacer Coflex at the L4–L5 segment, respectively.

Methods

Six human L4–L5 specimens were loaded with pure moments of ±7.5 Nm in flexion/extension, lateral bending, and axial rotation in a custom-made spine tester. The testing protocol was as follows: (a) intact condition, (b) destabilization by resection of the anterior longitudinal ligament (ALL), (c) implantation of the Charité with retained posterior longitudinal ligament (PLL), (d) supplemental DSS implantation, (e) removal of DSS rods and PLL resection, (f) DSS rod re-implantation, (g) enlargement of rod length, and (h) removal of DSS and implantation of Coflex. Range of motion (ROM), neutral zone, and segmental angulation were determined.

Results

ALL resection did not influence significantly ROM. TDR increased lateral bending and axial rotation only after resection of the PLL, whereas flexion/extension remained unchanged. DSS limited all degrees of freedom prior to and after PLL resection. Rod length enlargement had no significant effect. Coflex limited significantly flexion/extension compared to the intact state and TDR, whereas lateral bending and axial rotation remained unchanged. TDR increased lordosis, whereas Coflex had a substantial kyphosing effect.

Conclusions

This study demonstrates that posterior dynamic stabilization in combination with TDR reduces flexion/extension ROM and segmental lordosis in a monosegmental biomechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cakir B, Richter M, Kafer W, Puhl W, Schmidt R (2005) The impact of total lumbar disc replacement on segmental and total lumbar lordosis. Clin Biomech (Bristol, Avon) 20(4):357–364

    Article  Google Scholar 

  2. Rohlmann A, Zander T, Bergmann G (2005) Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine. Spine 30(7):738–743

    Article  PubMed  Google Scholar 

  3. Kafer W, Clessienne CB, Daxle M, Kocak T, Reichel H, Cakir B (2008) Posterior component impingement after lumbar total disc replacement: a radiographic analysis of 66 ProDisc-L prostheses in 56 patients. Spine 33(22):2444–2449

    Article  PubMed  Google Scholar 

  4. Hallab N, Link HD, McAfee PC (2003) Biomaterial optimization in total disc arthroplasty. Spine 28(20):139–152

    Article  Google Scholar 

  5. Kurtz SM, Peloza J, Siskey R, Villarraga ML (2005) Analysis of a retrieved polyethylene total disc replacement component. Spine J 5(3):344–350

    Article  PubMed  Google Scholar 

  6. Kurtz SM, van Ooij A, Ross R, de Waal Malefijt J, Peloza J, Ciccarelli L, Villarraga ML (2007) Polyethylene wear and rim fracture in total disc arthroplasty. Spine J 7(1):12–21

    Article  PubMed  Google Scholar 

  7. van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L (2007) Polyethylene wear debris and long-term clinical failure of the Charite disc prosthesis: a study of 4 patients. Spine 32(2):223–229

    Article  PubMed  Google Scholar 

  8. van Ooij A, Oner FC, Verbout AJ (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech 16(4):369–383

    Article  PubMed  Google Scholar 

  9. Punt IM, Visser VM, van Rhijn LW, Kurtz SM, Antonis J, Schurink GW, van Ooij A (2008) Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients. Eur Spine J 17(1):36–43

    Article  PubMed  PubMed Central  Google Scholar 

  10. Siepe CJ, Mayer HM, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement: different results for different levels. Spine 32(7):782–790

    Article  PubMed  Google Scholar 

  11. Siepe CJ, Korge A, Grochulla F, Mehren C, Mayer HM (2008) Analysis of post-operative pain patterns following total lumbar disc replacement: results from fluoroscopically guided spine infiltrations. Eur Spine J 17(1):44–56

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shim CS, Lee SH, Shin HD, Kang HS, Choi WC, Jung B, Choi G, Ahn Y, Lee S, Lee HY (2007) CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32(9):1012–1018

    Article  PubMed  Google Scholar 

  13. Goel VK, Grauer JN, Patel T, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R, Dick D, Panjabi MM, Serhan H (2005) Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30(24):2755–2764

    Article  PubMed  Google Scholar 

  14. Wiseman CM, Lindsey DP, Fredrick AD, Yerby SA (2005) The effect of an interspinous process implant on facet loading during extension. Spine 30(8):903–907

    Article  PubMed  Google Scholar 

  15. Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17(8):1049–1056

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 23(2):242–247

    Article  CAS  Google Scholar 

  17. Nockels RP (2005) Dynamic stabilization in the surgical management of painful lumbar spinal disorders. Spine 30(16 Suppl):S68–S72

    Article  PubMed  Google Scholar 

  18. Schmoelz W, Erhart S, Unger S, Disch AC (2012) Biomechanical evaluation of a posterior non-fusion instrumentation of the lumbar spine. Eur Spine J 21(5):939–945

    Article  PubMed  PubMed Central  Google Scholar 

  19. Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15(6):913–922

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16(4):418–423

    Article  PubMed  CAS  Google Scholar 

  21. Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15(8):1276–1285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Beastall J, Karadimas E, Siddiqui M, Nicol M, Hughes J, Smith F, Wardlaw D (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine 32(6):685–690

    Article  PubMed  Google Scholar 

  23. Link HD (2002) History, design and biomechanics of the LINK SB Charite artificial disc. Eur Spine J 11(Suppl 2):S98–S105

    PubMed  PubMed Central  Google Scholar 

  24. Wilke HJ, Heuer F, Schmidt H (2009) Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine (Phila Pa 1976) 34(3):255–261

    Article  Google Scholar 

  25. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part I. Lumbar spine. Eur Spine J 15(6):720–730

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97

    Article  PubMed  CAS  Google Scholar 

  27. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  28. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26(6):636–642

    Article  PubMed  CAS  Google Scholar 

  30. Cakir B, Richter M, Puhl W, Schmidt R (2006) Reliability of motion measurements after total disc replacement: the spike and the fin method. Eur Spine J 15(2):165–173

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mayer HM (2005) Total lumbar disc replacement. J Bone Joint Surg Br 87(8):1029–1037

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28(20):S110–S117

    Article  PubMed  Google Scholar 

  33. Panjabi M, Henderson G, Abjornson C, Yue J (2007) Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions. Spine 32(12):1311–1319

    Article  PubMed  Google Scholar 

  34. Panjabi M, Malcolmson G, Teng E, Tominaga Y, Henderson G, Serhan H (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine 32(9):959–966 (discussion 967)

    Article  PubMed  Google Scholar 

  35. Wilke HJ, Schmidt H, Werner K, Schmolz W, Drumm J (2006) Biomechanical evaluation of a new total posterior-element replacement system. Spine 31(24):2790–2796 (discussion 2797)

    Article  PubMed  Google Scholar 

  36. Leivseth G, Braaten S, Frobin W, Brinckmann P (2006) Mobility of lumbar segments instrumented with a ProDisc II prosthesis: a two-year follow-up study. Spine 31(15):1726–1733

    Article  PubMed  Google Scholar 

  37. Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine 19(14):1611–1618

    Article  PubMed  CAS  Google Scholar 

  38. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267

    Article  PubMed  Google Scholar 

  39. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26(6):122–129

    Article  Google Scholar 

  40. Zander T, Rohlmann A, Bergmann G (2004) Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit. Biomed Tech (Berl) 49(1–2):27–32

    Article  CAS  Google Scholar 

  41. Hopf C, Heeckt H, Beske C (2004) Indikation, Biomechanik und Frühergebnisse des künstlichen Bandscheibenersatzes. Z Orthop Ihre Grenzgeb 142(2):153–158

    Article  PubMed  CAS  Google Scholar 

  42. McAfee PC, Cunningham BW, Hayes V, Sidiqi F, Dabbah M, Sefter JC, Hu N, Beatson H (2006) Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. Spine 31(19 Suppl):152–160

    Article  Google Scholar 

  43. Cakir B, Richter M, Schmoelz W, Schmidt R, Reichel H, Wilke HJ (2012) Resect or not to resect: the role of posterior longitudinal ligament in lumbar total disc replacement. Eur Spine J 21(Suppl 5):S592–S598

    Article  PubMed  Google Scholar 

  44. Geisler FH (2006) The CHARITE artificial disc: design history, FDA IDE study results, and surgical technique. Clin Neurosurg 53:223–228

    PubMed  Google Scholar 

  45. Gedet P, Haschtmann D, Thistlethwaite PA, Ferguson SJ (2009) Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system. Eur Spine J 18(10):1504–1511

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17(8):1057–1065

    Article  PubMed  PubMed Central  Google Scholar 

  47. Legaye J (2005) Consequences defavorables sur l’equilibre sagittal du rachis du systeme de neutralisation dynamique. Rev Chir Orthop Reparatrice Appar Mot 91(6):542–550

    Article  PubMed  CAS  Google Scholar 

  48. Siddiqui M, Karadimas E, Nicol M, Smith FW, Wardlaw D (2006) Effects of X-STOP device on sagittal lumbar spine kinematics in spinal stenosis. J Spinal Disord Tech 19(5):328–333

    Article  PubMed  Google Scholar 

  49. Siddiqui M, Nicol M, Karadimas E, Smith F, Wardlaw D (2005) The positional magnetic resonance imaging changes in the lumbar spine following insertion of a novel interspinous process distraction device. Spine 30(23):2677–2682

    Article  PubMed  Google Scholar 

  50. Cakir B, Schmidt R, Huch K, Puhl W, Richter M (2004) Sagittales Alignement und segmentale Beweglichkeit nach endoprothetischer Versorgung lumbaler Bewegungssegmente. Z Orthop Ihre Grenzgeb 142(2):159–165

    Article  PubMed  CAS  Google Scholar 

  51. Wilke HJ, Schmidt R, Richter M, Schmoelz W, Reichel H, Cakir B (2012) The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation. Eur Spine J 21(Suppl 5):577–584

    Article  PubMed Central  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Käfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käfer, W., Cakir, B., Midderhoff, S. et al. Circumferential dynamic stabilization of the lumbar spine: a biomechanical analysis. Eur Spine J 23, 2330–2339 (2014). https://doi.org/10.1007/s00586-014-3286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3286-y

Keywords

Navigation