Skip to main content

Advertisement

Log in

Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt–chromium alloy metal-on-metal lumbar disc replacements.

Methods

Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co.

Results

Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively.

Conclusion

In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Cases with values between 1.5 and 3 lengths from the upper or lower edge of the box are defined as outlier. The box length is the interquartile range (25–75 %), (SPSS ver. 10.05).

  2. Cases with values more than three box lengths from the upper or lower edge of the box are defined as extreme. The box length is the interquartile range (25–75 %), (SPSS ver. 10.05).

References

  1. Gamradt SC, Wang JC (2005) Lumbar disc arthroplasty. Spine J 51:95–103

    Article  Google Scholar 

  2. Bao QB, McCullen GM, Higham PA, Dumbleton JH, Yuan HA (1996) The artificial disc: theory, design and materials. Biomaterials 1712:1157–1167

    Article  Google Scholar 

  3. Guyer RD, McAfee PC, Hochschuler SH, Blumenthal SL, Fedder IL, Ohnmeiss DD, Cunningham BW (2004) Prospective randomized study of the charite artificial disc: data from two investigational centers. Spine J 46(Suppl):252S–259S

    Article  Google Scholar 

  4. Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO III, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective, randomized, multicenter food and drug administration investigational device exemption study of the prodisc-l total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 3211:1155–1162

    Article  Google Scholar 

  5. Mathews HH, Lehuec J, Friesem T, Zdeblick T, Eisermann L (2004) Design rationale and biomechanics of maverick total disc arthroplasty with early clinical results. Spine J 46(Suppl):268S–275S

    Article  Google Scholar 

  6. Harris WH (2001) Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 393:66–70

    Article  PubMed  Google Scholar 

  7. van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L (2007) Polyethylene wear debris and long-term clinical failure of the charite disc prosthesis: a study of 4 patients. Spine (Phila Pa 1976) 322:223–229

    Article  Google Scholar 

  8. Amstutz HC, Le Duff MJ, Campbell PA, Gruen TA, Wisk LE (2010) Clinical and radiographic results of metal-on-metal hip resurfacing with a minimum ten-year follow-up. J Bone Joint Surg Am 9216:2663–2671

    Article  Google Scholar 

  9. Treacy RBC, McBryde CW, Shears E, Pynsent PB (2011) Birmingham hip resurfacing: a minimum follow-up of ten years. J Bone Joint Surg Br 931:27–33

    Google Scholar 

  10. Sieber HP, Rieker CB, Kottig P (1999) Analysis of 118 second-generation metal-on-metal retrieved hip implants. J Bone Joint Surg Br 811:46–50

    Article  Google Scholar 

  11. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CLM, Ostlere S, Athanasou N, Gill HS, Murray DW (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 907:847–851

    Google Scholar 

  12. Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty: five to nine-year follow-up. J Bone Joint Surg Am 886:1183–1191

    Article  Google Scholar 

  13. Skipor AK, Campbell PA, Patterson LM, Anstutz HC, Schmalzried TP, Jacobs JJ (2002) Serum and urine metal levels in patients with metal-on-metal surface arthroplasty. J Mater Sci Mater Med 1312:1227–1234

    Article  Google Scholar 

  14. MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 406:282–296

    Article  PubMed  Google Scholar 

  15. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP (2010) The john charnley award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 4682:318–325

    Article  Google Scholar 

  16. Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AVF (2009) Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and birmingham hip resurfacing arthroplasties. J Bone Joint Surg Br 9110:1287–1295

    Google Scholar 

  17. MacDonald SJ, Brodner W, Jacobs JJ (2004) A consensus paper on metal ions in metal-on-metal hip arthroplasties. J Arthroplasty 198(Suppl 3):12–16

    Article  Google Scholar 

  18. Kim Y, Kassab F, Berven SH, Zurakowski D, Hresko MT, Emans JB, Kasser JR (2005) Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis. Spine (Phila Pa 1976) 308:923–926

    Article  Google Scholar 

  19. del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 167:1055–1061

    Article  Google Scholar 

  20. McPhee IB, Swanson CE (2007) Metal ion levels in patients with stainless steel spinal instrumentation. Spine (Phila Pa 1976) 3218:1963–1968

    Article  Google Scholar 

  21. Rackham MD, Cundy TP, Antoniou G, Freeman BJC, Sutherland LM, Cundy PJ (2010) Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 359:975–982

    Article  Google Scholar 

  22. Cundy TP, Delaney CL, Rackham MD, Antoniou G, Oakley AP, Freeman BJC, Sutherland LM, Cundy PJ (2010) Chromium ion release from stainless steel pediatric scoliosis instrumentation. Spine (Phila Pa 1976) 359:967–974

    Article  Google Scholar 

  23. Kasai Y, Iida R, Uchida A (2003) Metal concentrations in the serum and hair of patients with titanium alloy spinal implants. Spine (Phila Pa 1976) 2812:1320–1326

    Google Scholar 

  24. Richardson TD, Pineda SJ, Strenge KB, Van Fleet TA, MacGregor M, Milbrandt JC, Espinosa JA, Freitag P (2008) Serum titanium levels after instrumented spinal arthrodesis. Spine (Phila Pa 1976) 337:792–796

    Article  Google Scholar 

  25. Zeh A, Planert M, Siegert G, Lattke P, Held A, Hein W (2007) Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick-type artificial lumbar disc (medtronic sofamor danek). Spine (Phila Pa 1976) 323:348–352

    Article  Google Scholar 

  26. Zeh A, Becker C, Planert M, Lattke P, Wohlrab D (2009) Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick type artificial lumbar disc (medtronic sofamor danek). Arch Orthop Trauma Surg 1296:741–746

    Article  Google Scholar 

  27. Stieber JR, Errico TJ, Bauer T, Whitaker C, Miz G, Sasso R (2010) Blood metal ion levels following implantation of the all-metal flexicore lumbar intervertebral disc replacement, 24–36 month follow-up. In: 10th Annual Global Symposium on Motion Preservation Technology,Spine Arthroplasty Society, New Orleans, LA, April 2010

  28. ASTM 1537-08: Standard specification for wrought cobalt-28 chromium-6 molybdenum alloys for surgical implants

  29. Gornet MF, Burkus JK, Dryer RF, Peloza JH (2011) Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine (Phila Pa 1976) 3625:E1600–E1611

    Article  Google Scholar 

  30. Obot IB, Obi-Egbedi NO, Umoren SA (2009) Adsorption characteristics and corrosion inhibitive properties of Clotrimazole for aluminium corrosion in hydrochloric acid. Int J Electrochem Sci 4:863–877

    CAS  Google Scholar 

  31. Eddy NO, Ebenso EE (2010) Adsorption and quantum chemical studies on cloxacillin and halides for the corrosion of mild steel in acidic medium Int. J. Electrochem. Sci. 5:731–750

    CAS  Google Scholar 

  32. Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO (1991) Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am 7310:1475–1486

    Google Scholar 

  33. Bisseling P, Zeilstra DJ, Hol AM, van Susante JLC (2011) Metal ion levels in patients with a lumbar metal-on-metal total disc replacement: should we be concerned? J Bone Joint Surg Br 937:949–954

    Google Scholar 

  34. Clark M, Prentice J, Hoggard N, Stockley I, Jacobs JJ, Wilkinson JM (2012) Effect of laboratory analysis on metal levels after momhr and potential impact on patient management and interpretation of research datasets. In: Transactions of the 58th Annual Meeting of the Orthopaedic Research Society, Poster #1928

  35. Villarraga ML, Cripton PA, Teti SD, Steffey DL, Krisnamuthy S, Albert T, Hilibrand A, Vaccaro A (2006) Wear and corrosion in retrieved thoracolumbar posterior internal fixation. Spine (Phila Pa 1976) 31:2454–2462

    Article  Google Scholar 

  36. Harper ML, Dooris A, Pare PE (2009) The fundamentals of biotribology and its application to spine arthroplasty. SAS J 3:125–132

    Article  Google Scholar 

  37. Witzleb W, Ziegler J, Krummenauer F, Neumeister V, Guenther K (2006) Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty. Acta Orthop 775:697–705

    Article  Google Scholar 

  38. Back DL, Young DA, Shimmin AJ (2005) How do serum cobalt and chromium levels change after metal-on-metal hip resurfacing? Clin Orthop Relat Res 438:177–181

    Article  PubMed  Google Scholar 

  39. Skipor AK, Campbell PA, Gitelis S, Berger RA, Amstutz HC & Jacobs JJ (2004) Three year prospective study of serum and urine metal levels in patients with metal-on-metal total hip and surface arthroplasty. In: Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, Paper 124

  40. Brodner W, Grubl A, Jankovsky R, Meisinger V, Lehr S, Gottsauner-Wolf F (2004) Cup inclination and serum concentration of cobalt and chromium after metal-on-metal total hip arthroplasty. J Arthroplasty 198(Suppl 3):66–70

    Article  Google Scholar 

  41. Kwon YM, Thomas P, Summer B, Pandit H, Taylor A, Beard D, Murray DW, Gill HS (2010) Lymphocyte proliferation responses in patients with pseudotumors following metal-on-metal hip resurfacing arthroplasty. J Orthop Res 284:444–450

    Google Scholar 

  42. Guyer RD, Shellock J, MacLennan B, Hanscom D, Knight RQ, McCombe P, Jacobs JJ, Urban RM, Bradford D, Ohnmeiss DD (2011) Early failure of metal-on-metal artificial disc prostheses associated with lymphocytic reaction: diagnosis and treatment experience in four cases. Spine (Phila Pa 1976) 367:E492–E497

    Article  Google Scholar 

  43. Berry MR, Peterson BG, Alander DH (2010) A granulomatous mass surrounding a maverick total disc replacement causing iliac vein occlusion and spinal stenosis: a case report. J Bone Joint Surg Am 925:1242–1245

    Article  Google Scholar 

  44. Francois J, Coessens R, Lauweryns P (2007) Early removal of a maverick disc prosthesis: surgical findings and morphological changes. Acta Orthop Belg 731:122–127

    Google Scholar 

Download references

Acknowledgments

This investigational device exemption study was sponsored by Medtronic, Memphis, TN.

Conflict of interest

Gornet—Royalties and Royalty payments with Medtronic. Burkus—Patent Holder with Medtronic and Royalties and Royalty payments with Medtronic. Harper—Employee of Medtronic. Chan—None Skipor—Institutional Funds are received from Medtronic Spinal and Biologics. Jacobs—Consultant: Zimmer, Medtronic, Johnson and Johnson, Smith and Nephew. Spinal Motion Research Funding: Medtronic, Zimmer and Spinal Motion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Gornet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gornet, M.F., Burkus, J.K., Harper, M.L. et al. Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty. Eur Spine J 22, 741–746 (2013). https://doi.org/10.1007/s00586-012-2581-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2581-8

Keywords

Navigation