Skip to main content
Log in

Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Progression of superior adjacent segment degeneration (PASD) could possibly be avoided by dynamic stabilization of an initially degenerated adjacent segment (AS). The current study evaluates ex vivo the biomechanics of a circumferential fixation connected to posterior dynamic stabilization at the AS. 6 human cadaver spines (L2–S1) were stabilized stepwise through the following conditions for comparison: intact spine (ISP), single-level fixation L5–S1 (SLF), SLF + dynamic AS fixation L4–L5 (DFT), and two-level fixation L4–S1 (TLF). For each condition, the moments required to reach the range of motion (ROM) of the intact whole spine segment under ±10 Nm (WSP10) were compared for all major planes of motion within L2–S1. The ROM at segments L2/3, L3/4, and L4/5 when WSP10 was applied were also compared for each condition. The moments needed to maintain WSP10 increased with each stage of stabilization, from ISP to SLF to DFT to TLF (p < 0.001), in all planes of motion within L2–S1. The ROM increased in the same order at L3/4 (extension, flexion, and lateral bending) and L2/3 (all except right axial rotation, left lateral bending) during WSP10 application with 300 N axial preload (p < 0.005 in ANOVA). At L4/5, while applying WSP10, all planes of motion were affected by stepwise stabilization (p < 0.001): ROM increased from ISP to SLF and decreased from SLF to DFT to TLF (partially p < 0.05). The moments required to reach WSP10 increase dependent on the number of fixated levels and the fixation stiffness of the implants used. Additional fixation shifts motion to the superior segment, according to fixation stiffness. Therefore, dynamic instrumentation cannot be recommended if prevention of hyper-mobility in the adjacent levels is the main target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bastian L, Lange U, Knop C, Tusch G, Blauth M (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10:295–300

    Article  CAS  PubMed  Google Scholar 

  2. Beastall J, Karadimas E, Siddiqui M, Nicol M, Hughes J, Smith F, Wardlaw D (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine (Phila Pa 1976) 32:685–690

    Google Scholar 

  3. Cheng BC, Gordon J, Cheng J, Welch WC (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976) 32:2551–2557

    Google Scholar 

  4. Chou WY, Hsu CJ, Chang WN, Wong CY (2002) Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg 122:39–43

    PubMed  Google Scholar 

  5. Chow DH, Luk KD, Evans JH, Leong JC (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 21:549–555

    CAS  Google Scholar 

  6. Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22:2655–2663

    CAS  Google Scholar 

  7. Dekutoski MB, Schendel MJ, Ogilvie JW, Olsewski JM, Wallace LJ, Lewis JL (1994) Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976) 19:1745–1751

    CAS  Google Scholar 

  8. Eck JC, Humphreys SC, Hodges SD (1999) Adjacent-segment degeneration after lumbar fusion: a review of clinical, biomechanical, and radiologic studies. Am J Orthop 28:336–340

    CAS  PubMed  Google Scholar 

  9. Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 90:163–169

    CAS  PubMed  Google Scholar 

  10. Gardner A, Pande KC (2002) Graf ligamentoplasty: a 7-year follow-up. Eur Spine J 11(Suppl 2):S157–S163

    PubMed  Google Scholar 

  11. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A:1497–1503

    PubMed  Google Scholar 

  12. Goto K, Tajima N, Chosa E, Totoribe K, Kubo S, Kuroki H, Arai T (2003) Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). J Orthop Sci 8:577–584

    Article  PubMed  Google Scholar 

  13. Hambly MF, Wiltse LL, Raghavan N, Schneiderman G, Koenig C (1998) The transition zone above a lumbosacral fusion. Spine (Phila Pa 1976) 23:1785–1792

    CAS  Google Scholar 

  14. Kanayama M, Hashimoto T, Shigenobu K, Togawa D, Oha F (2007) A minimum 10-year follow-up of posterior dynamic stabilization using Graf artificial ligament. Spine (Phila Pa 1976) 32:1992–1996 (discussion 1997)

    Google Scholar 

  15. Kim YS, Zhang HY, Moon BJ, Park KW, Ji KY, Lee WC, Oh KS, Ryu GU, Kim DH (2007) Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up. Neurosurg Focus 22:E10

    Google Scholar 

  16. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319

    Article  CAS  PubMed  Google Scholar 

  17. Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313

    Article  CAS  PubMed  Google Scholar 

  18. Mochida J, Toh E, Suzuki K, Chiba M, Arima T (1997) An innovative method using the Leeds-Keio artificial ligament in the unstable spine. Orthopedics 20:17–23

    CAS  PubMed  Google Scholar 

  19. Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR (2008) The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine (Phila Pa 1976) 33:19–26

    Google Scholar 

  20. Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922

    Article  PubMed  Google Scholar 

  21. Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22:257–265

    Article  Google Scholar 

  22. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944

    Google Scholar 

  23. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24:1003–1009

    CAS  Google Scholar 

  24. Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20:743–747

    CAS  Google Scholar 

  25. Pihlajamaki H, Bostman O, Ruuskanen M, Myllynen P, Kinnunen J, Karaharju E (1996) Posterolateral lumbosacral fusion with transpedicular fixation: 63 consecutive cases followed for 4 (2–6) years. Acta Orthop Scand 67:63–68

    Article  CAS  PubMed  Google Scholar 

  26. Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C (2005) The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine (Phila Pa 1976) 30:E109–E114

    Google Scholar 

  27. Rahm MD, Hall BB (1996) Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord 9:392–400

    Article  CAS  PubMed  Google Scholar 

  28. Rohlmann A, Burra NK, Zander T, Bergmann G (2007) Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J 16:1223–1231

    Article  PubMed  Google Scholar 

  29. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 26:E557–E561

    CAS  Google Scholar 

  30. Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15:1276–1285

    Article  CAS  PubMed  Google Scholar 

  31. Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    CAS  PubMed  Google Scholar 

  32. Sengupta DK (2004) Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am 35:43–56

    Article  PubMed  Google Scholar 

  33. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  34. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    Article  CAS  PubMed  Google Scholar 

  35. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19

    Article  CAS  PubMed  Google Scholar 

  36. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  CAS  PubMed  Google Scholar 

  37. Yue JJ, Timm JP, Panjabi MM, Jaramillo-de la Torre J (2007) Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus 22:E12

    Article  PubMed  Google Scholar 

  38. Zander T, Rohlmann A, Burra NK, Bergmann G (2006) Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech (Bristol, Avon) 21:767–774

    Article  Google Scholar 

  39. Zhu Q, Larson CR, Sjovold SG, Rosler DM, Keynan O, Wilson DR, Cripton PA, Oxland TR (2007) Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics. Spine (Phila Pa 1976) 32:55–62

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Putzier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strube, P., Tohtz, S., Hoff, E. et al. Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J 19, 2171–2180 (2010). https://doi.org/10.1007/s00586-010-1549-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1549-9

Keywords

Navigation