Skip to main content

Advertisement

Log in

Nimesulide effects on the blood pro-oxidant–antioxidant status in lipopolysaccharide-challenged mice

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The maintenance of the pro-oxidant–antioxidant equilibrium between ROS production and antioxidant protection systems is an important element of systemic defence and requires efficient control. The aim of the study was to monitor the dynamics of antioxidants and lipid peroxidation in mice challenged intraperitoneally with Escherichia coli (O111:B4) lipopolysaccharide (LPS) and to evaluate the antioxidant potential of the non-steroidal anti-inflammatory drug nimesulide. Albino mice were divided into three groups (n = 36). Group I received a single intraperitoneal (i.p.) injection with 25 μg/0.5 mL LPS. Thirty minutes before LPS, group II received orally (p.o.) 100 mg/kg nimesulide. The preparation was administered for 4 days. Group III received only nimesulide at the indicated dose for 4 days. The blood parameters were analysed at hour 0 (prior to treatment applied to each group), post treatment hours 6 and 24, and days 3, 5 and 9. Assayed parameters included catalase, reduced glutathione, albumin, glucose, ferric reducing ability of plasma (FRAP), malondialdehyde and oxidative stress index. LPS induced continuous hypoglycaemia, decreased catalase activity and reduced glutathione, but FRAP and albumin were preserved. The application of nimesulide alone did not alter oxidative stress index and enhanced FRAP. Its co-administration with LPS normalised reduced glutathione, decreased catalase and increased malondialdehyde concentrations and oxidative stress index. The application of nimesulide as antioxidant requires objective evaluation of associated benefits and risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aamir M, Mahmood A, Qaiser J, Anum S, Muhammad W, Muhammad AA (2014) Hepatoprotective investigations of Cyminum dried seeds in nimesulide intoxicated albino rats by phytochemical and biochemical methods. Int J Pharm Pharm Sci 6(4):506–510

    Google Scholar 

  • Ahmad A, Manjrekar P, Yadav C, Agarwal A, Srikantiah RM, Hegde A (2016) Evaluation of ischemia-modified albumin, malondialdehyde, and advanced oxidative protein products as markers of vascular injury in diabetic nephropathy. Biomark Insights 11:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Abd AM, Al-Abbasi FA, Nofal SM, Khalifa AE, Williams RO, El-Eraky WI, Nagy AA, Abdel-Naim AB (2014) Nimesulide improves the symptomatic and disease modifying effects of leflunomide in collagen induced arthritis. PLoS One 9(11):e111843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva LI, Kozhemyakin LA, Kishkun AA (1988) A modified thiobarbituric acid test for measuring lipid peroxidation. Lab Delo 11:41–43

    Google Scholar 

  • Arana MJ, Vallespi G, Chinea (2003) Inhibition of LPS-responses by synthetic peptides derived from LBP associates with the ability of the peptides to block LBP-LPS interaction. J Endotoxin Res 9(5):281–291

    CAS  Google Scholar 

  • Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57(13–14):1825–1835

    CAS  PubMed  Google Scholar 

  • Bennet A (1999) Overview of nimesulide. Rheumatology 38(suppl.1):1–3

    Article  Google Scholar 

  • Bennet A (2001) Nimesulide: a well-established cyclo-oxygenase-2 inhibitor with many other pharmacological properties relevant to inflammatory disease. In: Vale JR, Botting RM (eds) Therapeutic roles of selective COX-2 inhibitors. William Harvey Press, London, pp 524–540

    Google Scholar 

  • Bennet A, Villa G (2000) Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities. Exp Opin Pharmacother 1:277–286

    Article  Google Scholar 

  • Benzie FF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bessone F (2010) Non-steroidal anti-inflammatory drugs: what is the actual risk of liver damage? World J Gastroenterol 16(45):5651–5661

    Article  PubMed  PubMed Central  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for determination of blood glutathione. J Lab Med 61:882–888

    CAS  Google Scholar 

  • Bevilacqua M, Vago T, Baldi G, Renesto E, Dallegri F (1994) Nimesulide decreases superoxide production by inhibiting phosphodiesterase type IV. Eur J Pharmacol 268:415–423

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya PK, Burman B, Roy A, Jamil M, Lyngdoh M, Mishra J (2015) Nimesulide induced leukocytoclastic vasculitis and hepatitis: a case report. SpringerPlus 4:302. https://doi.org/10.1186/s40064-015-1081-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttenschoen K, Radermacher P, Bracht H (2010) Endotoxin elimination in sepsis: physiology and therapeutic application. Langenbeck's Arch Surg 395(6):597–605

    Article  Google Scholar 

  • Callahan GN, Yates RM, Warren AL (2014) Basic veterinary immunology. University Press of Colorado, Boulder, p 80303

    Google Scholar 

  • Choudhary S, Boldogh I, Brasier AR (2016) Inside-out signaling pathways from nuclear reactive oxygen species control pulmonary innate immunity. J Innate Immun 8:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornell RP (1989) Hyperinsulinemia elicited by interleukin-1 and nonlethal endotoxemia in rats. Circ Shock 28:121–130

    CAS  PubMed  Google Scholar 

  • Das SK, Roy C (2011) The protective role of Benincasa hispida on nimesulide-induced hepatotoxicity in albino rat model. Int J Green Pharm 5:192–197

    Article  Google Scholar 

  • Deitschel SJ, Kerl ME, Chang CH (2012) Age-associated changes to pathogen-associated molecular pattern-induced inflammatory mediator production in dogs. J Vet Emerg Crit Care 20(5):494–502

    Article  Google Scholar 

  • Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AMK, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide 1 secretion from L cells and alpha cells. Nat Med 17:1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca LA, Goncalves RC, Filho JDR, Girardi FM, Filho WPC, Dias DCR, Bento LD (2016) Influence of selenium and vitamin E supplementation on energy metabolism in horses used in policing activity. Comp Clin Pathol 25:351–355

    Article  CAS  Google Scholar 

  • Ghosn EEB, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, Herzenberg LA, Herzenberg LA (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci USA 107:2568–2573

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  CAS  Google Scholar 

  • Hayashi Y (2012) Polymixin B hemoperfusion (PMX-F) for severe sepsis and septic shock. Nihon Rinsho 70(2):311–314

    PubMed  Google Scholar 

  • Held P (2015) An introduction to reactive oxygen species. Measurement of ROS. in Cell BioTek Rev 1–26

  • Holowaychuk MK, Birkenheuer AJ, Li J (2012) Alterations in calcium homeostasis in dogs with induced endotoxemia. J Vet Intern Med 26(2):244–251

    Article  CAS  PubMed  Google Scholar 

  • Infusino I, Panteghini M (2013) Serum albumin: accuracy and clinical use. Clin Chim Acta 419:15–18

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN (2010) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Jones DP (2000) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  Google Scholar 

  • Kaconis Y, Kowalski I, Howe J, Brauser A, Richter W, Razquin-Olazaran I, Inigo-Pestana M, Garidel P, Rossle M, Martinez de Tejada G, Gutsmann T, Brandenburg K (2011) Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 100:2652–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil NA, Ahmed EM, El-Nassan HB, Ahmed OK, Al-Abd AM (2012) Synthesis and biological evaluation of novel pyrazoline derivatives as anti-inflammatory and antioxidant agents. Arch Pharm Res 35:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Kosovrasti VY, Nechev L, Amiji MM (2016) Peritoneal macrophage-specific TNF-α gene silencing in LPS-induced acute inflammation model using CD44 targeting hyaluronic acid nanoparticles. Mol Pharm 13(10):3404–3416

    Article  CAS  PubMed  Google Scholar 

  • Krishanappa H (2010) Investigations of toxicologic and immunotoxicologic potential of nimesulide. A thesis, Department of Industrial Biotechnology Dr. MGR Educational and Research Institute University Chennai

  • Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Dis. https://doi.org/10.4061/2011/327089

  • Mishra V, Baines M, Wenstone R, Shenkin A (2005) Markers of oxidative damage, antioxidant status and clinical outcome in critically ill patients. Ann Clin Biochem 42:269–276

    Article  CAS  PubMed  Google Scholar 

  • Modi CM, Mody SK, Patel HB, Dudhatra GB, Kumar A, Avale M (2012) Toxicopathological overview of analgesic and anti-inflammatory drugs in animals. J Appl Pharm Sci 02(01):149–157

    Google Scholar 

  • Navarro J, Obrador E, Pellicer JA, Asensi M, Vina J, Estrela JM (1997) Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic Biol Med 22(7):1203–1209

    Article  CAS  Google Scholar 

  • Nguyen AT, Mandard S, Dray C, Deckert V, Valet P, Besnard P, Drucker DJ, Lagrost L, Grober J (2014) Lipopolysaccharide-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes 63:471–482

    Article  CAS  PubMed  Google Scholar 

  • Nohr MK, Dudele A, Poulsen MM, Ebbesen LH, Radko Y, Christensen LP, Jessen N, Richelsen B, Lund S, Pedersen SB (2016) LPS-enhanced glucose-stimulated insulin secretion is normalized by resveratrol. PLoS One 11:e0146840. https://doi.org/10.1371/journal.pone0146840

    Article  PubMed  PubMed Central  Google Scholar 

  • Noori S (2012) An overview of oxidative and antioxidant defensive system. Open Access Sci Rep 1(8):1–9

    Google Scholar 

  • Raetzsch CF, Brooks NL, Alderman JM, Moore KS, Hosick PA, Klebanov S, Akira S, Bear JE, Baldwin AS, Mackman N, Combs T (2009) LPS inhibition of glucose production through the TLR4, MYD88, NF-kB pathway. Hepatology 50(2):592–600. https://doi.org/10.1002/hep.22999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainsford KD (2006) Nimesulide – a multifactorial approach to inflammation and pain: scientific and clinical consensus. Curr Med Res Opin 22(6):1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Rainsford KD, Bevilacqua M, Dallegri F, Gago F, Ottonello L, Sandrini G, Tavares IG (2005). In: Nimesulide - actions and uses, Birkhauser Verlag AG, pp 133–244 doi: https://doi.org/10.1007/3-7643-7410-1_4, Pharmacological properties of nimesulide

  • Roche MP, Rondeau P, Sing NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  • Ronco C, Piccinni P, Rosner MH (2010) Endotoxemia and endotoxin shock: disease, diagnosis and therapy. Contrib Nephrol Basel, Karger 167:14–24

    Article  Google Scholar 

  • Rosenfeld Y, Lev N, Shai Y (2010) Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry 49:853–861

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Tripathi M, Chaudhari BP, Pandey PK, Kakkar P (2012) Natural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats. PLoS One 7(4):e34200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohi KK, Khanduja KL (2003) Nimesulide affects antioxidant status during acute lung inflammation in rats. Indian J Biochem Biophys 40:238–245

    CAS  PubMed  Google Scholar 

  • Sozer S, Ortac R, Lermioglu F (2011) An investigation of toxicity potential of nimesulide in juvenile rats. Turk J Pharm 8(2):147–158

    Google Scholar 

  • Uchiyama M, Michara M (1978) Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Biochemistry 86:271–278

    CAS  Google Scholar 

  • Vogel SN, Henricson BE, Neta R (1991) Roles of interleukin-1 and tumor necrosis factor in lipopolysaccharide-induced hypoglycemia. Infect Immun 59:2494–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson WH, Chen Y, Jones DP (2003) Redox state of glutathione and thioredoxin in differentiation and apoptosis. Biofactors 17(1–4):307–314

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SX, Mouithys-Mickalad A, Deby-Dupont GP, Deby CMT, Maroulis AP, Labasse AH, Lamy ML, Crielaard JMR, Reginster JYL, Henrotin YE (2000) In vitro study of an antioxidant properties on nimesulide and 4-OH nimesulide: effects on HRP- and luminol-dependent chemiluminescence produced by human chondrocytes. Osteoarthr Cartil 8:419–425

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Crouch RK (1992) Albumin in the cornea is oxidized by hydrogen peroxide. Cornea 11(6):567–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our heartiest thanks to Mrs. Daniela Ivanova, Faculty of Veterinary Medicine, for her help in assaying oxidative stress parameters and the technical assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Andonova.

Ethics declarations

Statement on animal rights

All institutional and national guidelines for the care and use of animals were followed.

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

I, Maria Andonova, declare that in this study all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andonova, M. Nimesulide effects on the blood pro-oxidant–antioxidant status in lipopolysaccharide-challenged mice. Comp Clin Pathol 28, 1003–1011 (2019). https://doi.org/10.1007/s00580-018-2877-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2877-0

Keywords

Navigation