Skip to main content

Advertisement

Log in

The efficacy of zymosan in pro-inflammatory cytokine production by peritoneal macrophages of melanoma-bearing mice

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Zymosan, a polysaccharide derived from yeast cell wall, has been widely applied as a macrophage-activating factor. Application of immunomodulatory compounds as cancer therapeutics has emerged in recent years. The goal of this study was to assess the effect of zymosan in the modulation of pro-inflammatory cytokines in melanoma-bearing mice. C57BL/6 mice were divided into four groups of seven mice including zymosan (Z group), melanoma (M group), zymosan treated melanoma-bearing mice (ZM group), and control (C group). Mice were treated with zymosan (10 μg) for four continuous days. At the end of the last day (25 days after tumor induction), blood samples and peritoneal macrophages were collected and mice were euthanized. The levels of IL-1β and IL-6 were measured in sera by enzyme-linked immunosorbent assay (ELISA). The expression of messenger RNA (mRNA) levels was analyzed by real-time polymerase chain reaction (RT-PCR). The results showed that zymosan significantly increases both serum release and mRNA levels of IL-1β and IL-6 in mice-bearing melanoma. Phagocytic activity of macrophages increased significantly by zymosan. Thus, our data may suggest that zymosan has a potential activity in cancer regulation and might be used as an adjuvant role in conventional cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ELISA:

Enzyme-linked immunosorbent assay

RT-PCR:

Real-time polymerase chain reaction

Treg:

Regulatory T cells

TLR:

Toll-like receptor

IP:

Intraperitoneally

SC:

Subcutaneously

FBS:

Fetal bovine serum

IL:

Interleukin

References

  • Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181:776–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Albeituni SH, Yan J (2013) The effects of β-glucans on dendritic cells and implications for cancer therapy. Anti Cancer Agents Med Chem 13:689–698

    Article  CAS  Google Scholar 

  • Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, Persing D (2004) Taking a toll on human disease: toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 4:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Basith S, Manavalan B, Yoo TH, Kim SG, Choi S (2012) Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 35:1297–1316

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of β-glucans. J Exp Med 197:1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent G, Giembycz MA, Rabe KF, Barnes PJ (1991) Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by ‘type IV’ selective PDE inhibitors. Br J Pharmacol 103:1339–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Investig 116:916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-de-Gómez L, Astudillo AM, Guijas C, Magrioti V, Kokotos G, Balboa MA, Balsinde J (2014) Cytosolic group IVA and calcium-independent group VIA phospholipase A2s act on distinct phospholipid pools in zymosan-stimulated mouse peritoneal macrophages. J Immunol 192:752–762

    Article  PubMed  Google Scholar 

  • Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667

    Article  CAS  PubMed  Google Scholar 

  • Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178:3107–3115

    Article  CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Szczeklik A, Wandzilak M (1987) The effect of six prostaglandins, prostacyclin and iloprost on generation of superoxide anions by human polymorphonuclear leukocytes stimulated by zymosan or formyl-methionyl-leucyl-phenylalanine. Biochem Pharmacol 36:4209–4213

    Article  CAS  PubMed  Google Scholar 

  • Hsiao Y-W, Liao K-W, Hung S-W, Chu R-M (2004) Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-β1 and restores the lymphokine-activated killing activity. J Immunol 172:1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Humes J, Sadowski S, Galavage M, Goldenberg M, Subers E, Bonney R, Kuehl F (1982) Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem 257:1591–1594

    CAS  PubMed  Google Scholar 

  • Hussein MR (2005) Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 32:191–205

    Article  PubMed  Google Scholar 

  • Jayaraman P, Sada-Ovalle I, Nishimura T, Anderson AC, Kuchroo VK, Remold HG, Behar SM (2013) IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation. J Immunol 190:4196–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczanowska S, Joseph AM, Davila E (2013) TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 93:847–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagari T, Doi H, Shimozato T (2002) The importance of IL-1β and TNF-α, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 169:1459–66

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, Gogas HJ (2008) Next generation of immunotherapy for melanoma. J Clin Oncol 26:3445–3455

    Article  CAS  PubMed  Google Scholar 

  • Lamkanfi M, Malireddi RS, Kanneganti T-D (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284:20574–20581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H (2014) TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol. doi:10.3389/fimmu.2014.00083

    Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak M, Vetvicka V (2008) β-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol 5:47–57

    Article  CAS  PubMed  Google Scholar 

  • Overwijk WW, Restifo NP (2001) B16 as a mouse model for human melanoma. Curr Protoc Immunol. doi:10.1002/0471142735.im2001s39

    PubMed  PubMed Central  Google Scholar 

  • Perkhofer S, Speth C, Dierich MP, Lass-Flörl C (2007) In vitro determination of phagocytosis and intracellular killing of Aspergillus species by mononuclear phagocytes. Mycopathologia 163:303–307

    Article  PubMed  Google Scholar 

  • Pillemer L, Schoenberg MD, Blum L, Wurz L (1955) Properdin system and immunity: II. Interaction of the properdin system with polysaccharides. Science 122:545–549

    Article  CAS  PubMed  Google Scholar 

  • Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BR, Basu M, Swain B, Dikhit MR, Jayasankar P, Samanta M (2013) Elucidation of novel structural scaffold in rohu TLR2 and its binding site analysis with peptidoglycan, lipoteichoic acid and zymosan ligands, and downstream MyD88 adaptor protein. BioMed Res Int. doi:10.1155/2013/185282

    Google Scholar 

  • Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S (2012) Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation. doi:10.1186/1742-2094-9-65

    Google Scholar 

  • Scheel O, Papavlassopoulos M, Blunck R, Gebert A, Hartung T, Zähringer U, Seydel U, Schromm AB (2006) Cell activation by ligands of the toll-like receptor and interleukin-1 receptor family depends on the function of the large-conductance potassium channel MaxiK in human macrophages. Infect Immun 74:4354–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1813:878–888

    CAS  Google Scholar 

  • Slack EC, Robinson MJ, Hernanz‐Falcón P, Brown GD, Williams DL, Schweighoffer E, Tybulewicz VL, Reis e Sousa C (2007) Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol 37:1600–1612

    Article  CAS  PubMed  Google Scholar 

  • Song JS, Kim Y-J, Han KU, Yoon BD, Kim JW (2015) Zymosan and PMA activate the immune responses of Mutz3-derived dendritic cells synergistically. Immunol Lett 167:41–46

    Article  CAS  PubMed  Google Scholar 

  • Stewart BW, Kleihues P (2003) World cancer report. IARC press, Lyon

    Google Scholar 

  • Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underhill DM (2003) Macrophage recognition of zymosan particles. J Endotoxin Res 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Veronesi U, Adamus J, Aubert C, Bajetta E, Beretta G, Bonadonna G, Bufalino R, Cascinelli N, Cocconi G, Durand J (1982) A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N Engl J Med 307:913–916

    Article  CAS  PubMed  Google Scholar 

  • Waldmann TA (2006) Effective cancer therapy through immunomodulation. Annu Rev Med 57:65–81

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Cao X, Wang J, Zhang W, Tao Q, Ye T (2000) Macrophage activation of lymphoma-bearing mice by liposome-mediated intraperitoneal IL-2 and IL-6 gene therapy. Chin Med J 113:281–285

    CAS  PubMed  Google Scholar 

  • Xia Y, Ross GD (1999) Generation of recombinant fragments of CD11b expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18). J Immunol 162:7285–7293

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khosravi.

Ethics declarations

All research and animal care procedures were approved by the Tehran University Animal Experimentation Ethics Committee. All mice were euthanized by cervical dislocation under diethyl ether anesthesia, and all efforts were made to minimize suffering.

This article does not contain any studies with human participants performed by any of the authors.

Funding

This study was funded by Khosravi (grant number: IR.220) as Professor in University of Tehran.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, M., Mortaz, E., Khosravi, A. et al. The efficacy of zymosan in pro-inflammatory cytokine production by peritoneal macrophages of melanoma-bearing mice. Comp Clin Pathol 25, 825–831 (2016). https://doi.org/10.1007/s00580-016-2269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-016-2269-2

Keywords

Navigation