Skip to main content
Log in

Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

A theorem of Viana says that almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. In this note we extend this result to cocycles on any noncompact classical semisimple Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We need \(C^{1+\alpha }\) regularity in order to apply the so-called Pesin’s theory (providing a measurable family of invariant manifolds with many good properties). In fact, it is known (see Bonatti et al. 2013 for instance) that Pesin’s theory may fail in \(C^1\) regularity.

  2. I.e., a semi-algebraic set is an element of the smallest Boolean ring of subsets of \(\mathbb {R}^n\) containing all subsets of the form \(\{(x_1,\ldots ,x_n)\in \mathbb {R}^n: P(x_1,\ldots , x_n)>0\}\) with \(P\in \mathbb {R}[X_1,\ldots ,X_n]\).

  3. These implications fail in the complex case; for example the compact group \(\mathrm {SU}(d)\) is Zariski-dense in \(\mathrm {SL}(d,\mathbb {C})\).

References

  • Aoun, R.: Transience of algebraic varieties in linear groups—applications to generic Zariski density. Ann. Inst. Fourier (Grenoble) 63, 2049–2080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A.: Density of positive Lyapunov exponents for \({\rm SL}(2,{\mathbb{R}})\)-cocycles. J. Am. Math. Soc. 24(4), 999–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. Publ. Math. Inst. Hautes Études Sci. 124, 319–347 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A., Krikorian, R.: Monotonic cocycles. Invent. Math. 202(1), 271–331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A., Viana, M.: Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math. 64, 311–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Invent. Math. 181(1), 115–189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Avila, A., Santamaria, J., Viana, M.: Holonomy invariance: rough regularity and applications to Lyapunov exponents. Astérisque 358, 13–74 (2013)

    MathSciNet  MATH  Google Scholar 

  • Barreira, L., Pesin, Y.: Exponents and Smooth Ergodic Theory. University Lecture Series, 23. American Mathematical Society, Providence, RI, xii+151 (2002)

  • Bochi, J.: Genericity of zero Lyapunov exponents. Ergod. Theory Dyn. Syst. 22, 1667–1696 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bochi, J., Viana, M.: The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. Math. 161, 1423–1485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogachev, V.I.: Measure Theory, vol. 2. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  • Bonatti, C., Crovisier, S., Shinohara, K.: The \(C^{1+\alpha }\) hypothesis in Pesin theory revisited. J. Mod. Dyn. 7(4), 605–618 (2013)

    MathSciNet  MATH  Google Scholar 

  • Bonatti, C., Gómez-Mont, X., Viana, M.: Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 579–624 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Bonatti, C., Viana, M.: Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Theory Dyn. Syst. 24, 1295–1330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    Book  MATH  Google Scholar 

  • Breuillard, E.: A strong Tits alternative. arXiv:0804.1395 (2008)

  • Colonius, F., Kliemann, W.: The Dynamics of Control. With an appendix by Lars Grüne. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (2000)

    MATH  Google Scholar 

  • Duarte, P., Klein, S.: Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles. Commun. Math. Phys. 332(1), 189–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Furman, A.: Random walks on groups and random transformations. In: Hasselblatt. B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1A, pp. 931–1014. North-Holland, Amsterdam (2002)

  • Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological Stability of Smooth Mappings. Lecture Notes in Mathematics, vol. 552. Springer, Berlin (1976)

  • Gol’dsheid, Y.I., Margulis, G.A.: Lyapunov exponents of a product of random matrices. Russ. Math. Surv. 44(5), 11–71 (1989)

    Article  MathSciNet  Google Scholar 

  • Guivarc’h, Y., Raugi, A.: Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes. Isr. J. Math. 65(2), 165–196 (1989)

    Article  MATH  Google Scholar 

  • Knapp, A.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser Boston, Inc., Boston (2002)

    MATH  Google Scholar 

  • Knill, O.: Positive Lyapunov exponents for a dense set of bounded measurable \({\rm SL}(2,{\mathbb{R}})\)-cocycles. Ergod. Theory Dyn. Syst. 12(2), 319–331 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov Exponents (Bremen, 1984). Lecture Notes in Mathematics, vol. 1886, pp. 56–73, Springer, New York (1986)

  • Moore, C.: Amenable groups of semi-simple groups and proximal flows. Isr. J. Math. 34, 121–138 (1979)

    Article  MATH  Google Scholar 

  • Palais, R.: Foundations of Global Non-linear Analysis. Benjamin, New York (1968)

    MATH  Google Scholar 

  • Viana, M.: Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. Math. 167(2), 643–680 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, D.: Density of positive Lyapunov exponents for symplectic cocycles. J. Eur. Math. Soc. (JEMS) (2017) (to appear)

  • Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for a careful reading of the manuscript and for useful suggestions that helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Varandas.

Additional information

Bessa is partially supported by FCT—‘Fundação para a Ciência e a Tecnologia’, through Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, project UID/MAT/00212/2013. Bochi is partially supported by project Fondecyt 1140202 (Chile). Varandas is partially supported by CNPq-Brazil.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, M., Bochi, J., Cambrainha, M. et al. Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases. Bull Braz Math Soc, New Series 49, 73–87 (2018). https://doi.org/10.1007/s00574-017-0048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-017-0048-6

Keywords

Navigation