Skip to main content
Log in

Methods for large-scale production of AM fungi: past, present, and future

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Many different cultivation techniques and inoculum products of the plant-beneficial arbuscular mycorrhizal (AM) fungi have been developed in the last decades. Soil- and substrate-based production techniques as well as substrate-free culture techniques (hydroponics and aeroponics) and in vitro cultivation methods have all been attempted for the large-scale production of AM fungi. In this review, we describe the principal in vivo and in vitro production methods that have been developed so far. We present the parameters that are critical for optimal production, discuss the advantages and disadvantages of the methods, and highlight their most probable sectors of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adholeya A, Tiwari P, Singh R (2005) Large-scale production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 315–338

    Chapter  Google Scholar 

  • Amijee F, Stribley DP, Tinker PB (1993) The development of endomycorrhizal root systems. VIII effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots. New Phytol 123:297–306

    Article  CAS  Google Scholar 

  • Avio L, Giovannetti M (1988) Vesicular–arbuscular mycorrhizal infection of lucerne roots in a cellulose-amended soil. Plant Soil 112:99–104

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular–arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992. doi:10.1111/j.1469-8137.2005.01374.x

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microb Interact 14:695–700. doi:10.1094/MPMI.2001.14.6.695

    Article  CAS  Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • Cano CP, Bago A (2007) Aseptic mycorrhization inoculant and in vitro and ex vitro application methods. WO/2007/014974

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Chen B, Christie P, Li X (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192. doi:10.1016/S0045-6535(00)00124-7

    Article  CAS  PubMed  Google Scholar 

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck D (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 341–375

    Chapter  Google Scholar 

  • Declerck S, Stullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Declerck S, D’Or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Article  Google Scholar 

  • Declerck S, IJdo M, Fernandez K, Voets L, de la Providencia I (2009) Method and system for in vitro mass production of arbuscular mycorrhizal fungi. WO/2009/090220

  • Diop TA, Bécard G, Piche Y (1992) Long-term in vitro culture of an endomycorrhizal fungus Gigaspora margarita, on Ri T-DNA transformed roots of carrot. Symbiosis 12:249–259

    Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990a) The management of populations of vesicular–arbuscular mycorrhizal fungi in acid-infertile soils of savanna ecosystem. I. The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil 122:229–240

    Article  CAS  Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990b) The management of populations of vesicular–arbuscular mycorrhizal fungi in acid-infertile soils of savanna ecosystem. II The effects of pre-crops on the spore populations of native and introduced VAM-fungi. Plant Soil 122:241–247

    Article  Google Scholar 

  • Douds DD Jr (1994) Relationship between hyphal and arbuscular colonization and sporulation in a mycorrhiza of Paspalum notatum Flugge. New Phytol 126:233–237. doi:10.1111/j.1469-8137.1994.tb03941.x

    Article  Google Scholar 

  • Douds DD Jr (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167. doi:10.1007/s00572-002-0174-9

    Article  CAS  PubMed  Google Scholar 

  • Douds DD Jr, Schenck NC (1990a) Increased sporulation of vesicular–arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Appl Environ Microbiol 56:413–418

    CAS  PubMed  Google Scholar 

  • Douds DD Jr, Schenck NC (1990b) Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol 116:621–627

    Article  CAS  Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21. doi:10.4141/P03-168

    Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Biores Tech 97:809–818. doi:10.1016/j.biortech.2005.04.015

    Article  CAS  Google Scholar 

  • Dugassa DG, Grunewaldt-Stöcker G, Schönbeck F (1995) Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5:279–282. doi:10.1007/BF00204962

    Google Scholar 

  • Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934. doi:10.1111/j.1462-2920.2006.01070.x

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Elmes RP, Mosse B (1984) Vesicular-arbuscular endomycorrhizal inoculum production II Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Can J Bot 62:1531–1536

    Article  CAS  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311. doi:10.1128/AEM.69.7.4308-4311.2003

    Article  CAS  PubMed  Google Scholar 

  • Feldmann F, Grotkass C (2002) Directed inoculum production—shall we be able to design AMF populations to achieve predictable symbiotic effectiveness? In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel, pp 261–279

    Google Scholar 

  • Fernandez F, Dellamico JM, Perez Y (2006) Inoculum mycorhizogene liquide. WO/2006/060968

  • Fontaine J, Grandmougin-Ferjani A, Glorian V, Durand R (2004) 24-Methyl:methylene sterols increase in monoxenic roots after colonization by arbuscular mycorrhizal fungi. New Phytol 163:159–167. doi:10.1111/j.1469-8137.2004.01075.x

    Article  CAS  Google Scholar 

  • Fortin JA, St-Arnaud M, Hamel C, Chaverie C, Jolicoeur M (1996) Aseptic in vitro endomycorrhizal spore mass production. US Pat. No. 5554530

  • Furlan V, Fortin JA (1977) Effects of light intensity on the formation of vesicular–arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol 79:335–340

    Article  Google Scholar 

  • Gadkar V, Driver JD, Rillig MC (2006) A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnol Lett 28:1071–1076. doi:10.1007/s10529-006-9055-1

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48. doi:10.1007/s005720050286

    Article  Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218. doi:10.1007/s00374-002-0457-5

    Article  CAS  Google Scholar 

  • Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel

    Google Scholar 

  • Gryndler M, Jansa J, Hršelová H, Chvátalové I, Vosátka M (2003) Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol 22:283–287. doi:10.1016/S0929-1393(02)00154-3

    Article  Google Scholar 

  • Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488. doi:10.1007/s00572-005-0352-7

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002) Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF? Mycorrhiza 12:297–301. doi:10.1007/s00572-002-0186-5

    Google Scholar 

  • Hawkins HJ, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus mosseae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196:143–149. doi:10.1023/A:1004271417469

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32

    Google Scholar 

  • Hung LLL, Sylvia DM (1988) Production of vesicular–arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357

    CAS  PubMed  Google Scholar 

  • IJdo M, SchtickzelleN, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114-122. doi:10.1111/j.1574-6941.2009.00829.x

  • Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Heidelberg, pp 427–441

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1997) Isolation, culture and detection of arbuscular mycorrhizal fungi. In: Hurst CJ (ed) Manual of environmental microbiology. American Society of Microbiology, Washington, pp 406–412

    Google Scholar 

  • Jarstfer AG, Farmer-Koppenol SDM, Sylvia DM (1988) Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–342. doi:10.1007/s005720050186

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13. doi:10.1016/j.femsec.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur M (1998) Optimisation d’un procédé de production de champignons endomycorhiziens en bioréacteur. Dissertation, École Polytechnique de Montréal

  • Jolicoeur M, Williams RD, Chavarie C, Fortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol Bioeng 63:224–232

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239. doi:10.1016/j.scienta.2008.02.002

    Article  Google Scholar 

  • Klironomos JM, Hart NN (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184. doi:10.1007/s00572-002-0169-6

    Article  PubMed  Google Scholar 

  • Koffi MC, de la Providencia IE, Elsen A, Declerck S (2009) Development of an in vitro culture system adapted to banana mycorrhization. Afr J Biotechnol 8:2750–2756

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Lee YJ, George E (2005) Development of a nutrient film technique culture system for arbuscular mycorrhizal plants. HortScience 40:378–380

    Google Scholar 

  • Ma N, Yokoyama K, Marumoto T (2007) Effect of peat on mycorrhizal colonization and effectiveness of the arbuscular mycorrhizal fungus Gigaspora margarita. Soil Sci Plant Nutr 53:744–752. doi:10.1111/j.1747-0765.2007.00204.x

    Article  CAS  Google Scholar 

  • Medeiros CAB, Clark RB, Ellis JR (1994) Growth and nutrient uptake of sorghum cultivated with vesicular–arbuscular mycorrhiza isolates at varying pH. Mycorrhiza 4:185–191. doi:10.1007/BF00206778

    Article  Google Scholar 

  • Millner PD, Kitt DG (1992) The Beltsville method for soilless production of vesicular–arbuscular mycorrhizal fungi. Mycorrhiza 2:9–15. doi:10.1007/BF00206278

    Article  Google Scholar 

  • Mohammad A, Khan AG, Kuek C (2000) Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339. doi:10.1007/s005720050278

    Article  Google Scholar 

  • Mohammad A, Mirta B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249. doi:10.1016/j.agee.2003.09.017

    Article  Google Scholar 

  • Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular–arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286

    Article  Google Scholar 

  • Mosse B (1962) The establishment of vesicular–arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    CAS  PubMed  Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root–organ cultures. Physiol Plant Pathol 5:215–233

    Article  Google Scholar 

  • Mosse M, Thompson JP (1981) Production of mycorrhizal fungi. US Pat. No 4294037

  • Mugnier J, Mosse B (1987) Vesicular–arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Article  Google Scholar 

  • Mugnier J, Jung G, Prioul J-L (1986) Method of producing endomycorrhizian fungi with arbuscules and vesicles in vitro. US Pat. No 4599312

  • Neumann E, George E (2005) Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15:533–537. doi:10.1007/s00572-005-0361-6

    Article  PubMed  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1982) Effects of different endomycorrhizal fungi on 5 host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107:535–538

    Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715. doi:10.1146/annurev.ecolsys.39.110707.173454

    Article  Google Scholar 

  • Saif SR (1983) The influence of soil aeration on the efficiency of vesicular-arbuscular mycorrhizas. II Effect of soil oxygen on growth and mineral uptake in Eupatorium odoratum L., Sorghum bicolor (L.) Moench and Guizotia abyssinica (L.f.) Cass. inoculated with vesicular–arbuscular mycorrhizal fungi. New Phytol 95:405–417

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi:10.1111/j.1461-0248.2006.009.10.x

    Article  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197. doi:10.1006/mpev.2001.1007

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhizal research, is not Glomus intraradices. New Phytol 183:1176–1187. doi:10.1111/j.1469-8137.2009.02874.x

    Article  PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  CAS  PubMed  Google Scholar 

  • Struble JE, Skipper HD (1988) Vesicular–arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280

    Article  Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes a vesicules et arbuscules en condition axeniques. C R de Acad Sci 303:245–250

    Google Scholar 

  • Sylvia DM, Schenck NC (1983) Application of superphosphate to mycorrhizal plants stimulates sporulation of phosphorus-tolerant vesicular–arbuscular mycorrhizal fungi. New Phytol 95:655–661

    Article  CAS  Google Scholar 

  • Sylvia DM, Jarstfer AG (1992) Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing growth. US Pat. No 5096481

  • Tajini F, Suriyakup P, Vailhe H, Jansa J, Drevon JJ (2009) Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia. BMC Plant Biol 9:73. doi:10.1186/1471-2229-9-73

    Article  PubMed  Google Scholar 

  • Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T-DNA transformed root in vitro. Mycol Prog 2:171–177. doi:10.1007/s11557-006-0055-2

    Article  Google Scholar 

  • Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118. doi:10.1016/j.femsle.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  • Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347–356. doi:10.1007/s00572-009-0233-6

    Article  PubMed  Google Scholar 

  • Walker C, Vestberg M (1994) A simple and inexpensive method for producing and maintaining closed pot cultures of arbuscular mycorrhizal fungi. Agri Sci Finland 3:233–240

    Google Scholar 

  • Wang WK (2003) Method of facilitating mass production and sporulation of arbuscular mycorrhizal fungi aseptic. US Pat. No. 6759232

  • White JA, Charvat I (1999) The mycorrhizal status of an emergent aquatic, Lythrum salicaria L., at different levels of phosphorus availability. Mycorrhiza 9:191–197. doi:10.1007/s005720050266

    Article  CAS  Google Scholar 

  • Wu CG, Liu YS, Hung LL (1995) Spore development of Entrophospora kentinensis in an aeroponic system. Mycologia 87:582–587

    Article  Google Scholar 

  • Zobel RW, Del Tredici P, Torrey JG (1976) Method for growing plants aeroponically. Plant Physiol 57:344–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by a Marie Curie Early-Stage Research Training Fellowship of the European Community’s Sixth Framework Program, under contract number MEST CT-2005-021016. S.C. acknowledges the financial support from the Belgian Federal Office for Scientific, Technical, and Cultural affairs under contract number C4/00/001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Declerck.

Additional information

Part of the Belgian Coordinated Collections of Microorganisms (BCCM)

Rights and permissions

Reprints and permissions

About this article

Cite this article

IJdo, M., Cranenbrouck, S. & Declerck, S. Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21, 1–16 (2011). https://doi.org/10.1007/s00572-010-0337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0337-z

Keywords

Navigation