Skip to main content
Log in

Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar “RioGrande 76R” was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bago B (1998) AM monoxenic cultures using tomato non-transformed roots. In: Kling M (ed) Development and function of the mycelium of arbuscular mycorrhizal fungi. Methods manual, Department of Microbiology. Swedish University of Agricultural Sciences, Uppsala, Sweden, pp 41–44

    Google Scholar 

  • Bago B (2000) Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226:263–274

    Article  CAS  Google Scholar 

  • Bago B, Bécard G (2002) Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts—achievements and hurdles in arbuscular mycorrhizal research. Birkhäuser-Verlag, pp 33–48

  • Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas. Soil biology series, vol. 4. Springer, Berlin Heidelberg New York, pp 111–138

    Chapter  Google Scholar 

  • Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular-mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273–280

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998b) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388

    Article  Google Scholar 

  • Bago B, Shachar-Hill Y, Pfeffer PE (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Cano C, Samson J, Coughlan, AP, Piché Y, Azcón-Aguilar C (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462

    Article  PubMed  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  • Barker SJ, Stummer B, Gao L, Dispain I, O’Connor TJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J 15:791–797

    Article  CAS  Google Scholar 

  • Bécard G, Fortin A (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Cano C, Bago B (2006) Competition and substrate colonization strategies of three polyxenically-grown arbuscular mycorrhizal fungi. Mycologia 97:1214–1227

    Google Scholar 

  • Cavagnaro TR, Gao L-L, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Colwell JD (1963) The estimation of the phosphorus fertilizer requirements of wheat in Southern New South Wales. Australian Journal of Experimental Agricultural and Animal Husbandry 3:190–197

    Article  CAS  Google Scholar 

  • David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulmik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. The Plant Journal 27: 561–569

    Article  CAS  PubMed  Google Scholar 

  • David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulmik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant–Microb Interact 16:382–388

    Article  CAS  Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2001) Glomus proliferum sp. nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187

    Article  Google Scholar 

  • Declerck S, Strullu DG, Fortin A (eds) (2005) In vitro culture of mycorrhizas. Soil biology series, vol. 4. Springer, Berlin Heidelberg New York

    Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Sejalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  Google Scholar 

  • Dickson S, Smith SE (2001) Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. New Phytol 151:735–742

    Article  Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28

    Article  CAS  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Fortin JA, Becard G, Declerck S, Dalpe Y, St-Arnaud M, Coughlan AP, Piche Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Gao LL, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular–mycorrhizal fungi. New Phytol 151:477–491

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect V-A mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Labour K, Jolicoeur M, St-Arnaud M (2003) Arbuscular mycorrhizal responsiveness of in vitro tomato root lines is not related to growth and nutrient uptake rates. Can J Bot 81:645–656

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microb Interact 14:1140–1148

    Article  CAS  Google Scholar 

  • Marsh BAB (1971) Measurement of length in random arrangement of lines. J Appl Ecol 8:265

    Article  Google Scholar 

  • Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532

    Article  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular–arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Müller J, Mohr U, Sprenger N, Bortlik K, Boller T, Wiemken A (1999) Pool sizes of fructans in roots and leaves of mycorrhizal and non-mycorrhizal barley. New Phytol 142:551–559

    Article  Google Scholar 

  • Nielsen JS, Joner EJ, Declerck S, Olsson S, Jakobsen I (2002) Phospho-imaging as a tool for visualization and noninvasive measurements of P transport dynamics in arbuscular mycorrhizas. New Phytol 154:809–819

    Article  CAS  Google Scholar 

  • Peterson RL, Guinel FC (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 147–171

    Chapter  Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Poulsen KH (2003) Variation among AM fungi in the formation of a functional association with a mycorrhiza-defective mutant. MSc. thesis, Copenhagen University, Copenhagen, Denmark

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London, UK

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. Chrysanthemi in an in vitro dual culture system with the vesicular–arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus G. intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • White PR (1934) Tomato root organ culture. Plant Physiol 9:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an OECD (Co-operative Research Programme: Biological Resource Management for Sustainable Agriculture Systems) fellowship to AB, which enabled his visit to Adelaide, and by the Spanish Ministry of Science and Research (Ref. AGL2001-1363). CC was partially supported by Project REN2003-00968GLO (MEC; JM Barea, I. P.). SD was in receipt of a postdoctoral research fellowship from the Australian Research Council. Our work forms part of an FAO/IAEA program on “Mutational analysis of root characters in annual food plants related to plant performance.” Work in Adelaide on AM colonization in tomato is supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bago, A., Cano, C., Toussaint, JP. et al. Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures. Mycorrhiza 16, 429–436 (2006). https://doi.org/10.1007/s00572-006-0054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0054-9

Keywords

Navigation