Skip to main content

Advertisement

Log in

Endothelium-dependent vasodilation in the cerebral arterioles of rats deteriorates during acute hyperglycemia and then is restored by reducing the glucose level

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Acute hyperglycemia in patients with traumatic brain injury correlates with a poor neurological outcome. We investigated the endothelium function of rat cerebral arterioles during acute hyperglycemia and after reducing the glucose levels using insulin. We also examined whether or not oxidative stress was involved in the cerebral arteriole response to acute hyperglycemia.

Methods

In isoflurane-anesthetized, mechanically ventilated rats, we used closed cranial window preparation to measure the changes in the pial arteriolar diameter following the topical application of acetylcholine (ACh) or adenosine. We examined the pial arteriolar vasodilator response before hyperglycemia, during hyperglycemia, and after reducing the glucose level using insulin. After intravenous pretreatment with an NADPH oxidase inhibitor (apocynin or diphenylene iodonium), we reexamined the pial arteriolar vasodilator response following the topical application of ACh.

Results

Under control conditions, the topical application of ACh dose-dependently dilated the cerebral arterioles. The vasodilatory responses to topical ACh were impaired during hyperglycemia and improved after the administration of insulin. The vasodilatory responses to topical adenosine were not affected by the glucose levels. In the apocynin or diphenylene iodonium pretreatment group, the topical application of ACh dilated the cerebral arterioles during hyperglycemia.

Conclusion

Acute hyperglycemia induces a dysfunction of the endothelium-dependent vasodilation of rat cerebral arterioles. The dysfunction can be reversed by improving the acute hyperglycemia and it can be prevented entirely by the administration of NADPH oxidase inhibitors. These results could suggest that controlling the glucose levels works protectivity to endothelium function of cerebral arterioles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bottle A, Millett C, Khunti K, Majeed A. Trends in cardiovascular admissions and procedures for people with and without diabetes in England, 1996–2005. Diabetologia. 2009;52(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  3. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.

    Article  PubMed  CAS  Google Scholar 

  4. DECODE Study Group tEDEG. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001;161(3):397–405.

    Article  Google Scholar 

  5. Jones KW, Cain AS, Mitchell JH, Millar RC, Rimmasch HL, French TK, Abbate SL, Roberts CA, Stevenson SR, Marshall D, Lappé DL. Hyperglycemia predicts mortality after CABG: postoperative hyperglycemia predicts dramatic increases in mortality after coronary artery bypass graft surgery. J Diabetes Complicat. 2008;22(6):365–70.

    Article  PubMed  Google Scholar 

  6. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G. Nishigaki. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mah E, Noh SK, Ballard KD, Matos ME, Volek JS, Bruno RS. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine. J Nutr. 2011;141(11):1961–8.

    Article  PubMed  CAS  Google Scholar 

  8. Affonso FS, Cailleaux S, Pinto LF, Gomes MB, Tibiriçá E. Effects of high glucose concentrations on the endothelial function of the renal microcirculation of rabbits. Arq Bras Cardiol. 2003;81(2):161–5.

    Article  Google Scholar 

  9. Sogawa K, Nagaoka T, Izumi N, Nakabayashi S, Yoshida A. Acute hyperglycemia-induced endothelial dysfunction in retinal arterioles in cats. Invest Ophthalmol Vis Sci. 2010;51(5):2648–55.

    Article  PubMed  Google Scholar 

  10. Azuma K, Kawamori R, Toyofuku Y, Kitahara Y, Sato F, Shimizu T, Miura K, Mine T, Tanaka Y, Mitsumata M, Watada H. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol. 2006;26(10):2275–80.

    Article  PubMed  CAS  Google Scholar 

  11. Didion SP, Lynch CM, Baumbach GL, Faraci FM. Impaired endothelium-dependent responses and enhanced influence of Rho-kinase in cerebral arterioles in type II diabetes. Stroke. 2005;36(2):342–7.

    Article  PubMed  CAS  Google Scholar 

  12. Tan S, Zhi PK, Luo ZK, Shi J. Severe instead of mild hyperglycemia inhibits neurogenesis in the subventricular zone of adult rats after transient focal cerebral ischemia. Neuroscience. 2015;303:138–48.

    Article  PubMed  CAS  Google Scholar 

  13. Cipolla MJ, Godfrey JA. Effect of hyperglycemia on brain penetrating arterioles and cerebral blood flow before and after ischemia/reperfusion. Transl Stroke Res. 2010;1(2):127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nakahata K, Kinoshita H, Azma T, Matsuda N, Hama-Tomioka K, Haba M, Hatano Y. Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress. Anesthesiology. 2008;108(2):269–75.

    Article  PubMed  CAS  Google Scholar 

  15. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7.

    Article  PubMed  CAS  Google Scholar 

  16. Mah E, Bruno RS. Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutr Res. 2012;32(10):727–40.

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi T, Juliet PA, Kano-Hayashi H, Tsunekawa T, Dingqunfang D, Sumi D, Matsui-Hirai H, Fukatsu A, Iguchi A. NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and -independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction. Diabetes Obes Metab. 2005;7(4):334–43.

    Article  PubMed  CAS  Google Scholar 

  18. Iida H, Iida M, Takenaka M, Fukuoka N, Dohi S. Comparative effects of cilostazol and aspirin on the impairment of endothelium-dependent cerebral vasodilation caused by acute cigarette smoking in rats. J Thromb Thrombolysis. 2010;29(4):483–8.

    Article  PubMed  CAS  Google Scholar 

  19. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ongini E, Fredholm BB. Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci. 1996;17(10):364 – 72.

    Article  PubMed  CAS  Google Scholar 

  21. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108(12):1527–32.

    Article  PubMed  Google Scholar 

  22. Sercombe R, Vicaut E, Oudart N, Sercombe C, Girard P. Acetylcholine-induced relaxation of rabbit basilar artery in vitro is rapidly reduced by reactive oxygen species in acute hyperglycemia: role of NADPH oxidase. J Cardiovasc Pharmacol. 2004;44(4):507–16.

    Article  PubMed  CAS  Google Scholar 

  23. Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006;37(1):267–73.

    Article  PubMed  CAS  Google Scholar 

  24. Mao XM, Liu H, Tao XJ, Yin GP, Li Q, Wang SK. Independent anti-inflammatory effect of insulin in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2009;25(5):435–41.

    Article  PubMed  CAS  Google Scholar 

  25. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067–72.

    Article  PubMed  CAS  Google Scholar 

  26. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  PubMed  CAS  Google Scholar 

  28. Alper G, Olukman M, Irer S, Cağlayan O, Duman E, Yilmaz C, Ulker S. Effect of vitamin E and C supplementation combined with oral antidiabetic therapy on the endothelial dysfunction in the neonatally streptozotocin injected diabetic rat. Diabetes Metab Res Rev. 2006;22(3):190–7.

    Article  PubMed  CAS  Google Scholar 

  29. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;373(9677):1798–807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001;281(5):E924–30.

    Article  Google Scholar 

  31. Nyvad J, Mazur A, Postnov DD, Straarup MS, Soendergaard AM, Staehr C, Brøndum E, Aalkjaer C, Matchkov VV. Intravital investigation of rat mesenteric small artery tone and blood flow. J Physiol. 2017;595(15):5037–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Zhong MF, Shen WL, Wang J, Yang J, Yuan WJ, He J, Wu PP, Wang Y, Zhang L, Higashino H, Chen H. Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats. J Physiol. 2011;589(Pt 21):5153–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (15K10509 and 17K11046) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Iida.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kito, K., Tanabe, K., Sakata, K. et al. Endothelium-dependent vasodilation in the cerebral arterioles of rats deteriorates during acute hyperglycemia and then is restored by reducing the glucose level. J Anesth 32, 531–538 (2018). https://doi.org/10.1007/s00540-018-2507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-018-2507-7

Keywords

Navigation