Skip to main content

Advertisement

Log in

Arginase 2 attenuates ulcerative colitis by antioxidant effects of spermidine

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Spermidine suppress oxidative stress and is involved in various disease pathogenesis including ulcerative colitis (UC). Arginase 2 (ARG2) plays a central role in the synthesis of spermidine. This study aimed to clarify the effect of endogenously produced spermidine on colitis.

Methods

The physiological role of ARG2 and spermidine was investigated using Arg2-deficient mice with reduced spermidine. Immunohistochemical staining of the rectum was used to analyze ARG2 expression and spermidine levels in healthy controls and UC patients.

Results

In mice with dextran sulfate sodium-induced colitis, ARG2 and spermidine levels were increased in the rectal epithelium. Spermidine protects colonic epithelial cells from oxidative stress and Arg2 knockdown cells reduced antioxidant activity. Organoids cultured from the small intestine and colon of Arg2-deficient mice both were more susceptible to oxidative stress. Colitis was exacerbated in Arg2-deficient mice compared to wild-type mice. Supplementation with spermidine result in comparable severity of colitis in both wild-type and Arg2-deficient mice. In the active phase of UC, rectal ARG2 expression and spermidine accumulation were increased compared to remission. ARG2 and spermidine levels were similar in healthy controls and UC remission patients.

Conclusions

ARG2 produces spermidine endogenously in the intestinal epithelium and has a palliative effect on ulcerative colitis. ARG2 and spermidine are potential novel therapeutic targets for UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARG2:

Arginase 2

DAPI:

4,6-Diamino-2-phenylindole

DSS:

Dextran sulfate sodium

GCL:

Glutamate–cysteine ligase

GCLC:

Glutamate–cysteine ligase catalytic subunit

GCLM:

Glutamate–cysteine ligase modifier subunit

HDAC2:

Histone deacetylase 2

HE:

Hematoxylin–eosin

HO-1:

Heme oxygenase-1

H2O2 :

Hydrogen peroxide

IBD:

Inflammatory bowel disease

KO:

Knockout

LPS:

Lipopolysaccharide

NQO1:

Nicotinamide quinone oxidoreductase 1

NRF2:

Nuclear factor erythroid 2-related factor 2

PCR:

Polymerase chain reaction

ROS:

Reactive oxygen species

SPD:

Spermidine

TNFα:

Tumor necrosis factor-α

TXNR:

Thioredoxin reductase 1

UC:

Ulcerative colitis

References

  1. Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6:74.

    Article  PubMed  Google Scholar 

  2. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78.

    Article  PubMed  Google Scholar 

  3. Nakase H, Sato N, Mizuno N, et al. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev. 2022;21: 103017.

    Article  CAS  PubMed  Google Scholar 

  4. Beaugerie L, Rahier JF, Kirchgesner J. Predicting, preventing, and managing treatment-related complications in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(1324–35): e2.

    Google Scholar 

  5. Ihara Y, Torisu T, Miyawaki K, et al. Ustekinumab improves active Crohn’s disease by suppressing the T helper 17 pathway. Digestion. 2021;102:946–55.

    Article  CAS  PubMed  Google Scholar 

  6. Imazu N, Torisu T, Ihara Y, et al. Ustekinumab decreases circulating Th17 cells in ulcerative colitis. Intern Med. 2023;63:153.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Madeo F, Hofer SJ, Pendl T, et al. Nutritional aspects of spermidine. Annu Rev Nutr. 2020;40:135–59.

    Article  CAS  PubMed  Google Scholar 

  8. Zou D, Zhao Z, Li L, et al. A comprehensive review of spermidine: safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf. 2022;21:2820–42.

    Article  CAS  PubMed  Google Scholar 

  9. Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.

    Article  CAS  PubMed  Google Scholar 

  10. Timmons J, Chang ET, Wang JY, et al. Polyamines and gut mucosal homeostasis. J Gastrointest Dig Syst. 2012. https://doi.org/10.4172/2161-069X.S7-001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weiss TS, Herfarth H, Obermeier F, et al. Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:529–35.

    Article  CAS  PubMed  Google Scholar 

  12. Obayashi M, Matsui-Yuasa I, Matsumoto T, et al. Polyamine metabolism in colonic mucosa from patients with ulcerative colitis. Am J Gastroenterol. 1992;87:736–40.

    CAS  PubMed  Google Scholar 

  13. Gobert AP, Latour YL, Asim M, et al. Protective role of spermidine in colitis and colon carcinogenesis. Gastroenterology. 2022;162(813–27): e8.

    Google Scholar 

  14. Nakamura A, Kurihara S, Takahashi D, et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun. 2021;12:2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu H, Yoo PK, Aguirre CC, et al. Widespread expression of arginase I in mouse tissues. Biochemical and physiological implications. J Histochem Cytochem. 2003;51:1151–60.

    Article  CAS  PubMed  Google Scholar 

  16. Choi S, Park C, Ahn M, et al. Immunohistochemical study of arginase 1 and 2 in various tissues of rats. Acta Histochem. 2012;114:487–94.

    Article  CAS  PubMed  Google Scholar 

  17. Coburn LA, Gong X, Singh K, et al. l-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS ONE. 2012;7: e33546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zwintscher NP, Shah PM, Salgar SK, et al. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model. Ann Med Surg (Lond). 2016;7:97–103.

    Article  PubMed  Google Scholar 

  19. Kudo T, Matsumoto T, Nakamichi I, et al. Recombinant human granulocyte colony-stimulating factor reduces colonic epithelial cell apoptosis and ameliorates murine dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2008;43:689–97.

    Article  CAS  PubMed  Google Scholar 

  20. Hara M, Torisu K, Tomita K, et al. Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress. Kidney Int. 2020;98:673–85.

    Article  CAS  PubMed  Google Scholar 

  21. Sakuma S, Abe M, Kohda T, et al. Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2. J Clin Biochem Nutr. 2015;56:15–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kawano S, Torisu T, Esaki M, et al. Autophagy promotes degradation of internalized collagen and regulates distribution of focal adhesions to suppress cell adhesion. Biol Open. 2017;6:1644–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Alli R, Vogel P, et al. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 2014;7:869–78.

    Article  CAS  PubMed  Google Scholar 

  24. Torisu T, Torisu K, Lee IH, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med. 2013;19:1281–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bajic D, Niemann A, Hillmer AK, et al. Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice. J Crohns Colitis. 2020;14:1462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ren W, Yin J, Wu M, et al. Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS ONE. 2014;9: e88335.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Andrade ME, Santos RD, Soares AD, et al. Pretreatment and treatment with l-arginine attenuate weight loss and bacterial translocation in dextran sulfate sodium colitis. JPEN J Parenter Enteral Nutr. 2016;40:1131–9.

    Article  CAS  PubMed  Google Scholar 

  28. Singh K, Gobert AP, Coburn LA, et al. Dietary arginine regulates severity of experimental colitis and affects the colonic microbiome. Front Cell Infect Microbiol. 2019;9:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coburn LA, Horst SN, Allaman MM, et al. l-Arginine availability and metabolism is altered in ulcerative colitis. Inflamm Bowel Dis. 2016;22:1847–58.

    Article  PubMed  Google Scholar 

  30. Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J. 2003;376:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niechcial A, Schwarzfischer M, Wawrzyniak M, et al. Spermidine ameliorates colitis via induction of anti-inflammatory macrophages and prevention of intestinal dysbiosis. J Crohns Colitis. 2023;17:1489.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu P, de la Vega MR, Dodson M, et al. Spermidine confers liver protection by enhancing NRF2 signaling through a MAP1S-mediated noncanonical mechanism. Hepatology. 2019;70:372–88.

    Article  CAS  PubMed  Google Scholar 

  33. Aihara S, Torisu K, Uchida Y, et al. Spermidine from arginine metabolism activates Nrf2 and inhibits kidney fibrosis. Commun Biol. 2023;6:676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan J, Yan JY, Wang YX, et al. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol. 2019;176:3126–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu TT, Li H, Dai Z, et al. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging (Albany NY). 2020;12:6401–14.

    Article  CAS  PubMed  Google Scholar 

  36. Medina CB, Mehrotra P, Arandjelovic S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;580:130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray Stewart T, Dunston TT, Woster PM, et al. Polyamine catabolism and oxidative damage. J Biol Chem. 2018;293:18736–45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36–44.

    Article  CAS  PubMed  Google Scholar 

  39. Piotrowska M, Swierczynski M, Fichna J, et al. The Nrf2 in the pathophysiology of the intestine: molecular mechanisms and therapeutic implications for inflammatory bowel diseases. Pharmacol Res. 2021;163: 105243.

    Article  CAS  PubMed  Google Scholar 

  40. Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta. 2008;1780:1304–17.

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.

    Article  CAS  PubMed  Google Scholar 

  43. Dowling JK, Afzal R, Gearing LJ, et al. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun. 2021;12:1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geiger R, Rieckmann JC, Wolf T, et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(829–42): e13.

    Google Scholar 

  45. Middleton SJ, Shorthouse M, Hunter JO. Increased nitric oxide synthesis in ulcerative colitis. Lancet. 1993;341:465–6.

    Article  CAS  PubMed  Google Scholar 

  46. Rachmilewitz D, Stamler JS, Bachwich D, et al. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Gut. 1995;36:718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yasukawa K, Tokuda H, Tun X, et al. The detrimental effect of nitric oxide on tissue is associated with inflammatory events in the vascular endothelium and neutrophils in mice with dextran sodium sulfate-induced colitis. Free Radic Res. 2012;46:1427–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the technical support from the Research Support Center, Graduate School of Medical Sciences, Kyushu University. The authors also thank Mr. M. Munakata and Mrs. M Tanaka at the Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University for assistance with histology. The authors thank Ellen Knapp, PhD, from Edanz Group (https://jp.edanz.com/ac) for editing a draft of this manuscript. The authors acknowledge BioRender.com to create graphic abstract.

Funding

This work was supported by JSPS KAKENHI [Grant No. JP21K06783] and a Grant-in-Aid for Scientific Research C.

Author information

Authors and Affiliations

Authors

Contributions

NI, and TT conceived the idea of the study. NI, AY, SK, T. Nitahata, YU, SA, and TT were involved in providing guidance on the animal experiments and data analysis. JU, KK, SF, YF, YM, T. Nagasue, TM, YT, and TT collected the clinical samples and contributed to interpretation of the data. TK, YO, and TT contributed to drafting of the manuscript and critical revision. All authors revised the manuscript, approved the manuscript to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Takehiro Torisu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imazu, N., Torisu, T., Yokote, A. et al. Arginase 2 attenuates ulcerative colitis by antioxidant effects of spermidine. J Gastroenterol (2024). https://doi.org/10.1007/s00535-024-02104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00535-024-02104-z

Keywords

Navigation