Skip to main content

Advertisement

Log in

A ~565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Cadomian orogen of the NE Bohemian Massif and of SW Iberia, a post-Gaskiers glacial event dated at c. 565 Ma has been detected. Such Ediacaran-aged glaciomarine deposits occur in the Weesenstein and Clanzschwitz groups of the Saxo-Thuringian zone (Bohemia) and in the Lower Alcudian group of the southern Central Iberian zone (Iberia). Both areas are parts of Cadomia situated in the Western and Central European Variscides. Glaciomarine sedimentary rocks are characterized by such features as dropstones, flat iron-shaped pebbles (“Bügeleisen-Geschiebe”), facetted pebbles, dreikanters, and zircon grains affected by ice abrasion. For age and provenance determination, LA–ICP–MS U–Pb ages (n = 1124) and Hf isotope (n = 446) analyses were performed. The maximum age of the glaciomarine deposits within a Cadomian back-arc basin based on U–Pb analytics resulted in the youngest detrital zircon populations showing ages of 562–565 Ma and of c. 566–576 Ma old zircon derived from granitoid pebbles within the diamictites. The youngest age recorded was 538–540 Ma based on zircon from the plutons which had intruded the previously deformed Ediacaran metasedimentary rocks. Previously described glaciomarine diamictites of Cadomia (Weesenstein, Clanzschwitz, and Orellana diamictites) are most definitely younger than the c. 579–581 Ma Gaskiers glaciation in Newfoundland (Gaskiers) and in SE New England (Squantum). We propose the term WeesensteinOrellana glaciation for this new Ediacaran glacial event, named after the most relevant regions of exposure. Palaeogeographically, these glaciomarine diamictites and related sedimentary deposits lie on the periphery of the West African Craton (western peri-Gondwana), and evidence has been provided by detrital zircon U–Pb ages and their Hf isotope composition. Correlation with similar glaciomarine deposits in the Anti-Atlas (Bou Azzer) and Saudi Arabia suggests a continued distribution of post-Gaskiers glacial deposits along the Gondwana margin of Northern Africa. The WeesensteinOrellana glaciation correlates in part with the Shuram–Wonoka δ13C anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abati J, Aghzer AM, Gerdes A, Ennih N (2010) Detrital zircon ages of Neoproterozoic sequences of the Moroccan anti-atlas belt. Precambr Res 181(1–4):115–128

    Article  Google Scholar 

  • Abati J, Aghzer AM, Gerdes A, Ennih N (2012) Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambr Res 212–213:263–274

    Article  Google Scholar 

  • Álvarez-Nava Oñate H, García Casquero JL, Gil Toja A, Hernández Urroz J, Lorenzo Álvarez S, López Díaz F, Mira López M, Monteserín López V, Nozal Martín F, Pardo Alonso MV, Picart Boira J, Robles Casas R, Santamaría Casanovas J, Solé FJ (1988) Unidades litoestratigráficas de los materiales Precámbrico-Cámbricos en la mitad suroriental de la zona Centro-Ibérica. II Congreso Geológico de España, Comunicaciones 1:19–22

    Google Scholar 

  • Bao H, Lyons JR, Zhou C (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453(7194):504–506

    Article  Google Scholar 

  • Bingen B, Griffin WL, Torsvik TH, Saeed A (2005) Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17:250–258

    Article  Google Scholar 

  • Black R, Latouche L, Liégeois JP, Caby R, Bertrand JM (1994) Pan-African displaced terranes of the Tuareg Shield (central Sahara). Geology 22:641–644

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchet PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57

    Article  Google Scholar 

  • Bowring SA, Landing E, Myrow P, Ramezani J (2002) Abstract #13045: geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Astrobiology 2:457–458

    Google Scholar 

  • Chauvel C, Levin E, Carpentier M, Arndt NT, Marini JC (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67

    Article  Google Scholar 

  • Clariana García MP, Rubio Pascual F, Montes Santiago MJ, González Clavijo EJ (2017) Continuous digital Geologic Map E1:50,000, Zona Centroibérica. Dominio esquisto-grauváquico y Cuenca del Guadiana (Zona-1400) in GEODE. Mapa Geológico Digital continuo de España (online). http://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=44df600f5c6241b59edb596f54388ae4. Accessed 9 Aug 2017

  • Condon DJ, Bowring SA (2011) A user’s guide to Neoproterozoic geochronology. Geol Soc Lond Mem 36(1):135–149

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331:154–155

    Article  Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19:213–231

    Article  Google Scholar 

  • Fuenlabrada JM, Pieren AP, Díez Fernández R, Sánchez Martínez S, Arenas A (2016) Geochemistry of the Ediacaran–Early Cambrian transition in Central Iberia: tectonic setting and isotopic sources. Tectonophysics 681:15–30

    Article  Google Scholar 

  • García-Hidalgo JF, Pieren Pidal AP, Olivé Davó A, Carbajal Menéndez A, de la Fuente Krauss JV, Moreno F, Cantos Robles R, Liñán E (1993) Memoria de la Hoja 779 “Villanueva de La Serena”. Mapa Geológico de España 1:50.000 (2ª Serie). IGME, Madrid

  • Gärtner A, Villeneuve M, Linnemann U, El Archi A, Bellon H (2013) An exotic terrane of Laurussian affinity in the Mauritanides and Souttoufides (Moroccan Sahara). Gondwana Res 24(2):687–699

    Article  Google Scholar 

  • Gehmlich M (2003) Die Cadomiden und Varisziden des Saxothuringischen Terranes—Geochronologie magmatischer Ereignisse. Freib Forsch C500:1–129

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261(3–4):230–243

    Article  Google Scholar 

  • Graindor MJ (1957) Le Briovérian dans le Nord-East du massif Armoricain. Mém. Carte Géol. Dét., France, pp 1–111

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Jenner GA, Tubret MN, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin. An Early Palaeozoic analogue of a long-lived active margin. Tectonophysics 365:221–232

    Article  Google Scholar 

  • Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN (2005) Toward a Neoproterozoic composite carbon isotope record. GSA Bulletin 117:1181–1207

    Article  Google Scholar 

  • Hebert CL, Kaufman AJ, Penniston-Dorland SC, Martin AJ (2010) Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambr Res 182:402–414

    Article  Google Scholar 

  • Hoffman PF (2009) Pan-glacial—a third state in the climate system. Geol Today 25(3):100–107

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Sci N Ser 281(5381):1342–1346

    Article  Google Scholar 

  • Hoffmann KH, Condon DJ, Bowring SA, Crowley JL (2004) U-Pb zircon date from the Neoproterozoic Ghaub Formation Namibia: constraints on Marinoan glaciation. Geology 32(9):817–820

    Article  Google Scholar 

  • Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U–Pb zircon data. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues, vol 327. The Geological Society, London, pp 197–214

  • Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-Th-Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332

    Article  Google Scholar 

  • Immonen N (2013) Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic. Oalaeogeogr Palaeoclimatol Palaeoecol 374:293–302

    Article  Google Scholar 

  • Julivert M, Fontboté JM, Ribeiro A, Conde LS (1972/1974) Mapa Tectónico de la Península Ibérica y Baleares a escala 1:1.000.000 y Memoria Explicativa. IGME, Madrid

  • Karaoui B, Breitkreuz C, Mahmoudi A, Youbi N, Hofmann M, Gärtner A, Linnemann U (2015) U–Pb zircon ages from volcanic and sedimentary rocks of the Ediacaran Bas Draâ inlier (Anti-Atlas Morocco): chronostratigraphic and provenance implications. Precambr Res 263:43–58

    Article  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the Snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic Biosphere. A multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97(4):1400–1405

    Article  Google Scholar 

  • Le Guerroue E, Allen PA, Cozzi A, Etienne JL, Fanning M (2006) 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran Ocean. Terra Nova 18:147–153

    Article  Google Scholar 

  • Linnemann U (1990) Lithostratigraphische und sedimentologische Untersuchung präsudetischer Sedimentabfolgen der südlichen Elbezone unter besonderer Berücksichtigung der Weesensteiner Gruppe (Jungproterozoikum) und der Mühlbach/Häselich-Nossener Gruppe (Kambro-Ordovizium). PhD Thesis, Bergakademie Freiberg, pp 1–120

  • Linnemann U (1991) Glazioeustatisch kontrollierte Sedimentationsprozesse im Oberen Proterozoikum der Elbezone (Weesensteiner Gruppe/Sachsen). Zbl Geol Paläontol 12(1):2907–2934

    Google Scholar 

  • Linnemann U (1994) Geologischer Bau und Strukturentwicklung der südlichen Elbezone. Abh. Staatl Mus Min Geol zu Dresden 40:7–36

    Google Scholar 

  • Linnemann U (2007) Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development. In: Vickers-Rich P, Komarower P (eds) the rise and fall of the Ediacaran Biota, vol 286. The Geological Society, London, pp 35–51

    Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153

    Article  Google Scholar 

  • Linnemann U, Drost K, Gerdes A, Jeffries T, Romer RL (2008) The Bohemian Massif (Chapter 3: “The Cadomian Orogeny”). In: McCann T (ed) The geology of Central Europe. The Geological Society of London, London, pp 121–147

    Google Scholar 

  • Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010a) The cadomian orogeny in the Saxo-Thuringian zone. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the cadomian active margin to the Variscan orogen. Schweizerbart Science, Stuttgart, pp 37–58

    Google Scholar 

  • Linnemann U, Hofmann M, Romer RL, Gerdes A (2010b) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the cadomian active margin to the Variscan orogen. Schweizerbart Science, Stuttgart, pp 59–98

    Google Scholar 

  • Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123(1–4):188–203

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278

    Article  Google Scholar 

  • Lotze F (1945) Zur Gliederung des Varisciden der Iberischen Meseta. Geotekt Forsch 6:78–92

    Google Scholar 

  • Ludwig KR (2001) Users Manual for Isoplot/Ex rev. 2.49: Berkeley Geochronology Center Special Publication No. 1a, pp 1–56

  • Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010) Calibrating the cryogenian. Science 327(5970):1241–1243

    Article  Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31(1):27–30

    Article  Google Scholar 

  • Narbonne GM, Xiao S, Shields G (2012) Ediacaran Period (Chapter 18) In: Gradstein FM, Ogg JG, Schmidt MD, Ogg GM (eds) Geologic Time Scale 2012. Elsevier, pp 427–449

  • Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW, Greentree C (2014) Deep-water Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution. J Paleontol 86:207–223

    Article  Google Scholar 

  • Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, pp 1–234

  • Ovtracht A, Tamain G (1970) Essai tectonique en Sierra Morena (Espagne). Congrès national des sociétés savantes. Sciences, Reims. C 95 T1, pp 305–327

  • Pieren AP (2000) Las sucesiones anteordovícicas de la región oriental de la provincia de Badajoz y área contigua de la de Ciudad Real. PhD Thesis, Universidad Complutense Madrid, pp 1–620

  • Pietzsch K (1917) Das Elbtalschiefergebiet südwestlich von Pirna. Zeitschrift der Deutschen Geologischen Gesellschaft 69:178–286

    Google Scholar 

  • Pietzsch K (1927) Der Bau des erzgebirgisch-lausitzer Grenzgebietes. Abhandlungen des Sächsischen Geologischen Landesamts 2:1–28

    Google Scholar 

  • Pietzsch K (1962) Geologie von Sachsen. VEB Deutscher Verlag der Wissenschaften Berlin, pp 1–870

  • Potrel A, Peucat JJ, Fanning CM, Auvray B, Burg J-P, Caruba C (1996) 3.5 Ga old terranes in the West African Craton, Mauritania. J Geol Soc 153(4):507–510

    Article  Google Scholar 

  • Potrel A, Peucat JJ, Fanning CM (1998) Archean crustal evolution of the West African Craton: example of the Amsaga Area (Reguibat Rise) U–Pb and Sm–Nd evidence for crustal growth and recycling. Precambr Res 90:107–117

    Article  Google Scholar 

  • Prave AR, Condon DJ, Hoffmann KH, Tapster S, Fallick AE (2016) Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology 44(8):631–634

    Article  Google Scholar 

  • Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD, Landing E, Mills A, Hodgin E, Macdonald FA (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44(11):955–958

    Article  Google Scholar 

  • Quesada C (1990) Precambrian successions in SW Iberia: their relationship to ´Cadomian´ orogenic events. In: D´Lemos RS, STrachan, RA, Topley, CG (eds) The Cadomian orogeny, vol 51. The Geological Society, London, pp 353–362

  • Quesada C (1991) Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics 185:225–245

    Article  Google Scholar 

  • Quesada C (1996) Evolución geodinámica de la zona Ossa-Morena durante el ciclo Cadomiense. In: Livro de Homenagem aõ Prof. Francisco Gonçalves, Uniniversidade de Évora, pp 205–230

  • Quesada C (2006) The Ossa-Morena Zone of the Iberian Massif: a tectonostratigraphic approach to its evolution. Z Dtsch Ges Geowiss 157(4):585–595

    Google Scholar 

  • Retallack GJ, Marconato A, Osterhout JT, Watts KE, Bindeman IN (2014) Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. J Geol Soc 171:709–722

    Article  Google Scholar 

  • Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African Craton. The West African Orogens and Circum-Atlantic Correlatives. Springer, Berlin, pp 31–61

    Book  Google Scholar 

  • Rooney AD, Strauss JV, Brandon AD, Macdonald FA (2015) A Cryogenian chronology: two long-lasting synchronous neoproterozoic glaciations. Geology 43(5):459–462

    Article  Google Scholar 

  • San José MA, Pieren Pidal AP, García-Hidalgo JF, Vilas Minondo L, Herranz Araújo P, Peláez Pruneda JR, Perejón A (1990) Ante-Ordovician stratigraphy. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, pp 147–159

  • Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian-Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255

    Article  Google Scholar 

  • Sánchez-García T, Quesada C, Bellido F, Dunning G, González de Tánago J (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa-Morena Zone (SW Iberia). Tectonophysics 461:72–90

    Article  Google Scholar 

  • Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmidt K (1960) Die Geröllführung algonkisch-kambrischer Grauwacken des Westlausitzer Zuges. Freiberger Forschungsheft C 91:1–79

    Google Scholar 

  • Sebastian U (2013) Die Geologie des Erzgebirges. Springer, pp 1–268

  • Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubret MN, Whitehouse MJ (2008) Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Talavera C, Martínez Poyatos D, González Lodeiro F (2015) SHRIMP U-Pb geochronological constraints on the timing of the intra-Alcudian (Cadomian) angular unconformity in the Central Iberian Zone (Iberian Massif, Spain). Int J Earth Sci 104:1739–1757

    Article  Google Scholar 

  • Thompson MD, Ramezani J, Crowley JL (2014) U-pb zircon geochronology of roxbury conglomerate, boston basin, massachusetts: tectono-stratigraphic implications for avalonia in and beyond SE New England. Am J Sci 314(6):1009–1040

    Article  Google Scholar 

  • Vernhet E, Youbi N, Chellai EH, Villeneuve M, El Archi A (2012) The Bou-Azzer glaciation: evidence for an Ediacaran glaciation on the West African Craton (Anti-Atlas, Morocco). Precambr Res 196–197:106–112

    Article  Google Scholar 

  • Vickers-Rich P, Fedonkin MA (2007) The proterozoic (2.5 billion to 542 million years ago). In: Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P (eds) The rise of animals. The Johns Hopkins University Press, Baltimore, pp 29–51

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Zieger J (2015) U–Pb-Datierung an magmatischen und detritischen Zirkonen des Döhlener Beckens. Master Thesis, Technische Universität Dresden, pp 1–141

Download references

Acknowledgements

This is a contribution to IGCP project 648 “Supercontinent Cycles and Global Geodynamics”. Gregory J. Retallack (Eugene) and an unknown reviewer are thanked for their helpful reviews. We thank the Australian IGCP Committee for their funding support for the work in Saudi Arabia as well as the UNESCO IGCP Board for project IGCP587. Special thanks go to Fayek Kattan and his team from the Saudi Geological Survey for facilitating our work in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Linnemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4355 kb)

Supplementary material 2 (DOC 1504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnemann, U., Pidal, A.P., Hofmann, M. et al. A ~565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. Int J Earth Sci (Geol Rundsch) 107, 885–911 (2018). https://doi.org/10.1007/s00531-017-1520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1520-7

Keywords

Navigation