Skip to main content

Advertisement

Log in

Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mafic–ultramafic dykes are important geological markers that can punctuate the onset of crustal extension during the breakup of a continent and provide valuable information on the mantle source. This study reports secondary ion mass spectroscopy zircon and baddeleyite U–Pb ages, elemental and Nd isotopic data for the Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China. Two kinds of rocks are confirmed: the picritic rock and the dolerite. Based on petrographic and geochemical features, the dolerite dykes are further subdivided into two groups: Group I mafic and Group II mafic dykes, which emplaced at ~760 Ma (zircon U–Pb) and ~800 Ma (zircon and baddeleyite U–Pb), respectively. All samples from the picritic rocks and the Group I mafic rocks show the features of high-Ti and alkaline basaltic magma in composition as well as “humped” trace element patterns, which are similar to those of typical alkaline basalts associated with continental rifts except for the slightly negative Nb–Ta anomalies. The Group II mafic rocks display the features of low-Ti and tholeiitic magma, moderately enriched in LILE and LREE, and characterized by distinctively negative Nb–Ta anomalies. The primary magmas of the picritic rocks and the Group I mafic rocks were generated from ca 25 % partial melting of an OIB-like, Nd isotopically depleted but incompatible elements relatively enriched mantle source within a garnet stable field. The Group II mafic rocks crystallized from crustal contaminated mafic magmas that were derived from a spinel-bearing sub-continental lithospheric mantle source, because of low ratios of La/Yb, Ti/Y and Sm/Yb. Geochemical features suggest that these groups of mafic–ultramafic dykes were formed in a continental rift setting, but derived from different mantle sources. In combination with other Neoproterozoic igneous rocks in the western margin of Yangtze Block, it is suggested that the Datian mafic–ultramafic dykes in the Panzhihua area could have been formed in a multistage continental rift system, most likely related to the proposed mantle superplume, which centered beneath South China at ca. 820 Ma and may have finally triggered the breakup of the supercontinent Rodinia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  • Albaredè F (1992) How deep do common basalts form and differentiate? J Geophys Res 97:10997–11009

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Bogdanova SV, Pisarevsky SA, Li ZX (2009) Assembly and breakup of Rodinia (some results of IGCP project 440). Stratigr Geol Correl 17:259–274

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Cong BL (ed) (1988) Formation and evolution of Panxi paleo-rift. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL et al (2008) Global record of 1600–700 Ma large igneous provinces (LIPS): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res 160:159–178

    Article  Google Scholar 

  • Evans DAD (2013) Reconstructing pre-Pangean supercontinents. Geol Soc Am Bull 125:1735–1751

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giret A, Lameyre J (1985) Inverted alkaline–tholeiitic sequences related to lithospheric thickness in the evolution of continental rifts and oceanic islands. J Afr Earth Sci 3(1–2):261–268

    Google Scholar 

  • Greentree MR, Li ZX (2008) The oldest known rocks in south-western China: SHRIMP U–Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. J Asian Earth Sci 33:289–302

    Article  Google Scholar 

  • Greentree MR, Li ZX, Li XH (2006) Latest Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res 151:79–100

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC et al (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • He DF (2009) Petrological and geochemical characteristics of the Lala copper deposit in Sichuan Province. The Gradute School of the Chinese Academy of Sciences, China (in Chinese with English abstract)

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Kullerud K, Skjerlie KP, Corfu F et al (2006) The 2.4 Ga Ringvassoy mafic dykes, West Trom Basement complex, Norway: the concluding act of early Palaeoproterozoic continental breakup. Precambrian Res 150:183–200

    Article  Google Scholar 

  • Li ZX, Zhang LH, Powell CM (1995) South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? Geology 23:407–410

    Article  Google Scholar 

  • Li ZX, Li XH, Kinny PD et al (1999) The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet Sci Lett 173:171–181

    Article  Google Scholar 

  • Li XH, Li ZX, Zhou H (2002a) U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangding Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res 113:135–155

    Article  Google Scholar 

  • Li ZX, Li XH, Zhou H et al (2002b) Grenville-aged continental collision in South China: new SHRIMP U–Pb zircon results and implications for Rodinia configuration. Geology 30:163–166

    Article  Google Scholar 

  • Li XH, Li ZX, Ge W et al (2003a) Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res 122:45–83

    Article  Google Scholar 

  • Li ZX, Li XH, Kinny PD et al (2003b) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res 122:85–109

    Article  Google Scholar 

  • Li XH, Li ZX, Sinclair JA et al (2006) Revisiting the “Yanbian Terrane”: implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Res 151:14–30

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  • Li XH, Liu Y, Li QL et al (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophy Geosyst 10:Q04010

    Google Scholar 

  • Li QL, Li XH, Liu Y et al (2010) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal Atom Spectrom 25:1107–1113

    Article  Google Scholar 

  • Lin GC, Li XH, Li WX (2007) SHRIMP U–Pb zircon age, geochemistry and Nd–Hf isotope of Neoproterozoic mafic dyke swarms in western Sichuan: petrogenesis and tectonic significance. Sci China Ser D 50:1–16

    Article  Google Scholar 

  • Ling WL, Gao S, Zhang BR et al (2003) Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res 122:111–140

    Article  Google Scholar 

  • Loucks RR (1990) Discrimination of ophiolitic from nonophiolitic ultramafic–mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology 18:346–349

    Article  Google Scholar 

  • Lugmair GW, Harti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Naldrett AJ (2010) Secular variation of magmatic sulfide deposits and their source magmas. Econ Geol 105:669–688

    Article  Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Peate DW, Hawkesworth CJ, Mantovani MSM (1992) Chemical stratigraphy of the Parana lavas South America: classification of magma-types and their spatial distribution. Bull Volcanol 55:119–139

    Article  Google Scholar 

  • Qi L, Hu J, Grégoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Salter MJV, Stracke A (2004) Composition of the depleted mantle. Geochem Geophy Geosyst 5(5):1–27

    Google Scholar 

  • Sharma M (1997) Siberian traps. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism. American Geophysical Union Geophysical Monograph, New York, pp 273–295

    Chapter  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Sichuan Bureau of Geology and Mineral Resource (SBGMR) (1991) Regional Geology of Sichuan Province. Geol. Publ. House, Beijing, p 730 (in Chinese with English abstract)

    Google Scholar 

  • Spaeth G, Hotten R, Peters M et al (1995) Mafic dykes in the Shackleton Range, Antarctica. Polarforschung 63(2/3):101–121

    Google Scholar 

  • Sprung P, Schuth S, Münker C et al (2007) Intraplate volcanism in New Zealand: the role of fossil plume material and variable lithospheric properties. Contrib Mineral Petrol 153:669–687

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds.) Magmatism in the Ocean Basins. Geological Society, London, Special Publications, no. 42, pp 313–345

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879

    Google Scholar 

  • Tang YJ, Zhang HF, Ying JF et al (2013) Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev 118:45–68

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Van Westrenen W, Allan NL, Blundy JD et al (2000) Atomistic simulation of trace element incorporation into garnets-comparison with experimental garnet-melt partitioning data. Geochim Cosmochim Acta 64:1629–1639

    Article  Google Scholar 

  • Vermeesch P (2006) Tectonic discrimination diagrams revisited. Geochem Geophy Geosyst 7:Q06017. doi:10.1029/2005GC001092

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wang XC, Li XH, Li WX et al (2008) The Bikou basalts in northwestern Yangtze Block, South China: Remains of 820–800 Ma continental flood basalts? Geol Soc Am Bull 120:1478–1492

    Article  Google Scholar 

  • Wang YJ, Zhang AM, Peter A et al (2013) Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Res 231:343–371

    Article  Google Scholar 

  • Wang YJ, Zhang YZ, Fan WM et al (2014) Early Neoproterozoic accretionary assemblage in the Cathaysia Block: geochronological, Lu–Hf isotopic and geochemical evidence from granitoid gneisses. Precambrian Res 249:144–161

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Chapman and Hall, London

    Book  Google Scholar 

  • Wilson M (1993) Geochemical characteristics of oceanic and continental basalts: A key to mantle dynamics? J Geol Soc Lond 150:977–990

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1976) Geochemical magma type discrimination: application to altered and metamorphosed igneous rocks. Earth Planet Sci Lett 45:326–336

    Google Scholar 

  • Wingate MTD, Compston W (2000) Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite. Chem Geol 168:75–97

    Article  Google Scholar 

  • Yang YJ, Bai ZJ, Zhu WG et al (2016) Platinum-group element geochemistry of the Neoproterozoic picritic dykes in the Panzhihua area, Sichuan Province. Bull Mineral Petrol Geochem 35(1):126–137 (in Chinese with English abstract)

    Google Scholar 

  • Yunnan Bureau of Geology (YBG) (1972) A report of regional geological survey in Yongren area of the People’s Republic of China (the scale of 1:200000) (in Chinese)

  • Zhao XF (2010) Paleoproterozoic crustal evolution and Fe–Cu metallogeny of the western Yangtze block, SW China. Unpublished Ph.D. thesis, University of Hong Kong, pp 1–192

  • Zhao JH, Zhou MF (2007a) Neoproterozoic adakitic plutons and arc magmatism along the western margins of the Yangtze Block, South China. J Geol 115:675–689

    Article  Google Scholar 

  • Zhao JH, Zhou MF (2007b) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Res 152:27–47

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Yan DP et al (2008) Zircon Lu–Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Res 163:189–209

    Article  Google Scholar 

  • Zhou MF, Kennedy AK, Sun M et al (2002a) Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J Geol 110:611–618

    Article  Google Scholar 

  • Zhou MF, Yan DP, Kennedy AK et al (2002b) SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67

    Article  Google Scholar 

  • Zhou MF, Ma YX, Yan DP et al (2006) The Yanbian terrane (southern Sichuan Province, SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res 144:19–38

    Article  Google Scholar 

  • Zhou JB, Li XH, Ge W et al (2007) Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Res 12:184–197

    Article  Google Scholar 

  • Zhu WG, Zhong H, Deng HL et al (2006) SHRIMP zircon U–Pb age, geochemistry and Nd–Sr isotopes of the Gaojiacun mafic–ultramafic intrusive complex, SW China. Int Geol Rev 48:650–668

    Article  Google Scholar 

  • Zhu WG, Zhong H, Li XH et al (2007) 40Ar–39Ar age, geochemistry and Sr–Nd–Pb isotopes of the Neoproterozoic Lengshuiqing Cu–Ni sulfide-bearing mafic–ultramafic complex, SW China. Precambrian Res 155:98–124

    Article  Google Scholar 

  • Zhu WG, Zhong H, Li XH et al (2008) SHRIMP Zircon U–Pb geochronology, elemental, and Nd isotopic geochemistry of the Neoproterozoic mafic dykes in the Yanbian area, SW China. Precambrian Res 164:66–85

    Article  Google Scholar 

Download references

Acknowledgments

We thank X.X. Ling, G.Q. Tang, Q.L. Li and H.X. Ma for the assistances during SIMS dating, B. Wang for major element analyses by XRF, J. Hu and Y. Huang for trace element analyses by ICP–MS, F. Xiao and X.B. Li for Nd isotope analyses by Triton, and J. Wang for Nd isotope analyses by Nu Plasma. The paper benefited from review comments from the editor and two anonymous reviewers. This work was supported by the NSFC (Grants 41273049, 41572074 and 40673031) and the State Key Laboratory of Ore Deposit Geochemistry (12th Five-Year Plan: SKLOG-ZY125-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guang Zhu.

Appendix

Appendix

See Table 5.

Table 5 Clinopyroxene compositions for the mafic–ultramafic dykes in the Datian area

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YJ., Zhu, WG., Bai, ZJ. et al. Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China. Int J Earth Sci (Geol Rundsch) 106, 185–213 (2017). https://doi.org/10.1007/s00531-016-1310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1310-7

Keywords

Navigation