Skip to main content
Log in

Harnack inequality for nonlocal operators on manifolds with nonnegative curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the Krylov–Safonov Harnack inequalities and Hölder estimates for fully nonlinear nonlocal operators of non-divergence form on Riemannian manifolds with nonnegative sectional curvatures. To this end, we first define the nonlocal Pucci operators on manifolds that give rise to the concept of non-divergence form operators. We then provide the uniform regularity estimates for these operators which recover the classical estimates for second order local operators as limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso-Orán, D., Córdoba, A., Martínez, A.D.: Integral representation for fractional Laplace–Beltrami operators. Adv. Math. 328, 436–445 (2018)

    Article  MathSciNet  Google Scholar 

  2. Applebaum, D., Estrade, A.: Isotropic Lévy processes on Riemannian manifolds. Ann. Probab. 28(1), 166–184 (2000)

    Article  MathSciNet  Google Scholar 

  3. Banica, V., González, M.D.M., Sáez, M.: Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iberoam. 31(2), 681–712 (2015)

    Article  MathSciNet  Google Scholar 

  4. Biswas, A., Modasiya, M.: Regularity results of nonlinear perturbed stable-like operators (2020). arXiv preprint arXiv:2004.06996

  5. Cabré, X.: Nondivergent elliptic equations on manifolds with nonnegative curvature. Commun. Pure Appl. Math. 50(7), 623–665 (1997)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.-Q., Kumagai, T., Wang, J.: Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. J. Math. Pures Appl. 9(125), 1–42 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  10. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow, volume 77 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. Science Press Beijing, New York (2006)

  11. Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2):601–628 (1990)

  12. Gigli, N.: Second order analysis on \(({\mathscr {P}}_2(M),W_2)\). Mem. Am. Math. Soc., 216(1018):xii+154 (2012)

  13. Guillen, N., Schwab, R.W.: Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal. 206(1), 111–157 (2012)

    Article  MathSciNet  Google Scholar 

  14. Jost, J.: Riemannian Geometry and Geometric Analysis, 7th edn. Universitext. Springer, Cham (2017)

  15. Kim, M., Lee, K.-A.: Regularity for fully nonlinear integro-differential operators with kernels of variable orders. Nonlinear Anal. 193, 111312 (2020)

  16. Kim, S.: Harnack inequality for nondivergent elliptic operators on Riemannian manifolds. Pac. J. Math. 213(2), 281–293 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kim, S., Kim, S., Lee, K.-A.: Harnack inequality for nondivergent parabolic operators on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 49(1–2), 669–706 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kim, S., Kim, Y.-C., Lee, K.-A.: Regularity for fully nonlinear integro-differential operators with regularly varying kernels. Potential Anal. 44(4), 673–705 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kim, S., Lee, K.-A.: Parabolic Harnack inequality of viscosity solutions on Riemannian manifolds. J. Funct. Anal. 267(7), 2152–2198 (2014)

    Article  MathSciNet  Google Scholar 

  20. Petersen, P.: Riemannian Geometry, volume 171 of Graduate Texts in Mathematics, 3rd edn. Springer, Cham (2016)

  21. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)

    Article  MathSciNet  Google Scholar 

  22. Villani, C.: Optimal Transport, Volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009). Old and new

  23. Wang, Y., Zhang, X.: An Alexandroff–Bakelman–Pucci estimate on Riemannian manifolds. Adv. Math. 232, 499–512 (2013)

    Article  MathSciNet  Google Scholar 

  24. Xu, S.: Local estimate on convexity radius and decay of injectivity radius in a Riemannian manifold. Commun. Contemp. Math. 20(6), 1750060 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Jongmyeong Kim is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2016R1E1A1A01941893). Minhyun Kim gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (GRK 2235/2 2021 - 282638148). The research of Ki-Ahm Lee is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP): NRF-2020R1A2C1A01006256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmyeong Kim.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, M. & Lee, KA. Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calc. Var. 61, 22 (2022). https://doi.org/10.1007/s00526-021-02124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02124-0

Mathematics Subject Classification

Navigation