Skip to main content

Advertisement

Log in

Uniqueness of least energy solutions for Monge–Ampère functional

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a bounded, smooth, uniformly convex domain in \(\mathbb {R}^n\). We consider the following functional

$$\begin{aligned} \mathcal {E}[u]=\int _{\Omega }(-u)\det D^2 u dx,\quad \Vert u\Vert _{L^{q+1}(\Omega )}=1 \qquad \qquad (0.1) \end{aligned}$$

where \(u\in C^2(\bar{\Omega })\) is convex and \(u=0\) on \(\partial \Omega \). In this paper, the uniqueness of least energy solution of (0.1) is investigated. For \(n=2\), we prove the least energy solution of (0.1) is unique for \(2<q<\infty \) provided it is locally uniformly convex. In particular, for \(q=+\infty \), we show the uniqueness of the least energy solution of (0.1) and find its relation to Santalò point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équations de Monge–Ampère réelles. J. Funct. Anal. 41(3), 354–377 (1981)

    Google Scholar 

  2. Bakelman, I.: Variational problem connected with elliptic Monge–Ampère equations. Dokl. Akad. Nauk. USSR 141, 1011–1014 (1961)

    Google Scholar 

  3. Bakelman, I.: Variational problems and elliptic Monge–Ampère equations. J. Differ. Geom. 18(4), 669–699 (1983)

    Google Scholar 

  4. Chavel, I.: Eigenvalues in Riemannian Geometry, vol. 115. Academic Press, Cambridge (1984)

    Google Scholar 

  5. Damascelli, L., Grossi, M., Pacella, F.: Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 16(5), 631–652 (1999)

    Google Scholar 

  6. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Google Scholar 

  7. Hartenstine, D.: Brunn–Minkowski-type inequalities related to the Monge–Ampère equation. Adv. Nonlinear Stud. 9(2), 277–294 (2009)

    Google Scholar 

  8. Hong, J., Huang, G., Wang, W.: Existence of global smooth solutions to Dirichlet problem for degenerate elliptic Monge–Ampère equations. Commun. Partial Differ. Equ. 36(4), 635–656 (2011)

    Google Scholar 

  9. Hong, J., Wang, W.: The regularity of a class of degenerate elliptic Monge–Ampère equations. J. Partial Differ. Equ. 22(3), 233–263 (2009)

    Google Scholar 

  10. Le, N.: The eigenvalue problem for the Monge–Ampère operator on general bounded convex domains. Annali della Scuola Normale Superiore di Pisa, p. 30 (2017)

  11. Le, N., Savin, O.: Schauder estimates for degenerate Monge–Ampère equations and smoothness of the eigenfunctions. Inventiones Mathematicae 207(1), 389–423 (2017)

    Google Scholar 

  12. Lin, C.-S.: Uniqueness of least energy solutions to a semilinear elliptic equation in \(\mathbb{R}^2\). Manuscripta Mathematica 84(1), 13–19 (1994)

    Google Scholar 

  13. Lions, P.-L.: Two remarks on Monge–Ampère equations. Annali di matematica pura ed applicata 142(1), 263–275 (1985)

    Google Scholar 

  14. Liu, J., Wang, X.-J.: Interior a priori estimates for the Monge–Ampère equation. Surv. Differ. Geom. 19(1), 151–177 (2014)

    Google Scholar 

  15. Maldonado, D.: The Monge–Ampère quasi-metric structure admits a Sobolev inequality. Math. Res. Lett. 20(3), 527–536 (2013)

    Google Scholar 

  16. Pacella, F.: Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems. Milan J. Math. 73(1), 221–236 (2005)

    Google Scholar 

  17. Santaló, L.: An affine invariant for convex bodies of \(n\)-dimensional space. Port. Math. 8, 155–161 (1949)

    Google Scholar 

  18. Savin, O.: A localization theorem and boundary regularity for a class of degenerate Monge–Ampére equations. J. Differ. Equ. 256(2), 327–388 (2014)

    Google Scholar 

  19. Tian, G., Wang, X.-J.: Moser–Trudinger type inequalities for the Hessian equation. J. Funct. Anal. 259(8), 1974–2002 (2010)

    Google Scholar 

  20. Tian, G.-J., Wang, X.-J.: A class of Sobolev type inequalities. Methods Appl. Anal. 15(2), 263–276 (2008)

    Google Scholar 

  21. Tso, K.: On a real Monge–Ampère functional. Inventiones mathematicae 101(1), 425–448 (1990)

    Google Scholar 

  22. Verbitsky, I.: The Hessian Sobolev inequality and its extensions. Discrete Contin. Dyn. Syst. 35(12), 6165–6179 (2015)

    Google Scholar 

  23. Wang, X.-J.: A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43, 25–54 (1994)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for his/her carefully reading the manuscript. The suggestions are helpful which make this paper more readable. The author was supported by National Natural Science Foundation of China under Grant 11871160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genggeng Huang.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G. Uniqueness of least energy solutions for Monge–Ampère functional. Calc. Var. 58, 73 (2019). https://doi.org/10.1007/s00526-019-1504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1504-5

Mathematics Subject Classification

Navigation