Skip to main content
Log in

An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We extend a theorem of Jörgens, Calabi and Pogorelov on entire solutions of elliptic Monge–Ampère equation to parabolic Monge–Ampère equation, and obtain delicate asymptotic behavior of solutions at infinity. For the dimension \(n\ge 3\), the work of Gutiérrez and Huang in Indiana Univ. Math. J. 47, 1459–1480 (1998) is an easy consequence of our result. And along the line of approach in this paper, we can treat other parabolic Monge–Ampère equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. 131, 129–134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.: Topics in PDEs: The Monge-Ampère Equation. Graduate Course. Courant Institute, New York University, New York (1995)

    Google Scholar 

  3. Caffarelli, L., Li, Y.Y.: An extension to a theorem of Jorgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 56, 549–583 (2003)

    Article  MATH  Google Scholar 

  4. Caffarelli, L., Li, Y.Y.: A Liouville theorem for solutions of the Monge–Ampère equation with periodic data. Ann. Inst. H. Poincaré, Anal. Non Linéaire 21, 97–100 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MATH  Google Scholar 

  6. Cheng, S.Y., Yau, S.T.: Complete affine hypersurfaces I, The completeness of affine metrics. Commun. Pure Appl. Math. 39, 839–866 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Guzmán, M.: Differentiation of Integrals in \(\mathbb{R}^n\). Lecture Notes in Mathematics, p. 481. Springer, Berlin (1975)

    Book  Google Scholar 

  8. Firey, W.J.: Shapes of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutiérrez, C.E., Huang, Q.: A generalization of a theorem by Calabi to the parabolic Monge–Ampère equation. Indiana Univ. Math. J. 47, 1459–1480 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gutiérrez, C.E., Huang, Q.: Geometric properties of the sections of solutions to the Monge–Ampère equation. Trans. Am. Math. Soc. 352, 4381–4396 (2000)

    Article  MATH  Google Scholar 

  11. Gutiérrez, C.E., Huang, Q.: \(W^{2, p}\) estimates for the parabolic Monge–Ampère equation. Arch. Ration. Mech. Anal. 159, 137–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jian, H., Wang, X.J.: Bernstein theorem and regularity for a class of Monge–Ampère equations. J. Differ. Geom. 93, 431–469 (2013)

    Article  MATH  Google Scholar 

  13. Jörgens, K.: Über die Lösungen der Differentialgleichung rt-\(s^2\)=1. Math. Ann. 127, 130–134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Dedicated to Shiing-Shen Chern on his 90th birthday. Results Math. 40, 233–245 (2001)

    Article  MathSciNet  Google Scholar 

  15. Krylov, N.V.: Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation. Sib. Math. J. 17, 226–236 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krylov, N.V.: On controllable diffusion processes with unbounded coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 45, 734–759 (1981)

    MathSciNet  MATH  Google Scholar 

  17. Krylov, N.V.: On the control of a diffusion process until the moment of the first exit from the domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 45, 1029–1048 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46, 487–523 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Lieberman, G.M.: Second Order Parabolic Partial Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  20. Pogorelov, A.V.: On the improper affine hyperspheres. Geom. Dedicata 1, 33–46 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, L.: Regularity results on the parabolic Monge–Ampère equation with VMO type data. J. Differ. Equ. 255, 1646–1656 (2013)

    Article  MATH  Google Scholar 

  22. Tso, K.: On an Aleksandrov–Bakelman type maximum principle for second-order parabolic equations. Commun. Partial Differ. Equ. 10, 543–553 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tso, K.: Deforming a hypersurface by its Gauss–Kronecker curvature. Commun. Pure Appl. Math. 38, 867–882 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, R., Wang, G.: On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge–Ampère equation. Northeast. Math. J 8, 417–446 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Wang, R., Wang, G.: The geometric measure theoretical characterization of viscosity solutions to parabolic Monge–Ampère type equation. J. Partial Diff. Equ. 6, 237–254 (1993)

    MATH  Google Scholar 

  26. Xiong, J., Bao, J.: On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations. J. Differ. Equ. 250, 367–385 (2011)

    Article  MATH  Google Scholar 

  27. Zhang, W., Bao, J.: A Calabi theorem for solutions of the parabolic Monge–Ampère equation with periodic data. Ann. Inst. Henri Poincare Anal. Nonlineaire. (2017). https://doi.org/10.1016/j.anihpc.2017.09.007

  28. Zhang, W.: Regularity results for solutions to parabolic Monge–Ampère equation with VMO\(^{\psi }\) data. Submitted

Download references

Acknowledgements

All authors are partially supported by NNSF (11371060) and Beijing Municipal Commission of Education for the Supervisor of Excellent Doctoral Dissertation (20131002701). The first author is also supported in part by National natural science foundation of China (11301034) and Deutsche Forschungsgemeinschaft (GRK 1463). They would like to thank Professor YanYan Li for constant encouragement, Professor Elmar Schrohe for helpful discussions and the reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguang Bao.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Bao, J. & Wang, B. An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. 57, 90 (2018). https://doi.org/10.1007/s00526-018-1363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1363-5

Mathematics Subject Classification

Navigation