Skip to main content
Log in

Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the boundary value problem

where \(\Omega \subset \mathbb {R}^{N}\), \(N \ge 2\), is a bounded domain with smooth boundary. We assume \(c,\, h \in L^q(\Omega )\) for some \(q > \max \{N/p,1\}\) with \(c \gneqq 0\) and \(\mu \in L^{\infty }(\Omega )\). We prove existence and uniqueness results in the coercive case \( \lambda \le 0\) and existence and multiplicity results in the non-coercive case \( \lambda >0\). Also, considering stronger assumptions on the coefficients, we clarify the structure of the set of solutions in the non-coercive case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel Hamid, H., Bidaut-Veron, M.F.: On the connection between two quasilinear elliptic problems with source terms of order 0 or 1. Commun. Contemp. Math. 12(5), 727–788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222(1), 21–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, B., Peral, I.: Existence and nonexistence results for quasilinear elliptic equations involving the \(p\)-Laplacian with a critical potential. Ann. Mat. Pura Appl. (4) 182(3), 247–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdellaoui, B., Peral, I., Primo, A.: Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results. J. Differ. Equ. 239(2), 386–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allegretto, W., Huang, Y.X.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. 32(7), 819–830 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl. 420(1), 772–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal. 268(8), 2298–2335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boccardo, L., Murat, F., Puel, J.-P.: Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. 4 (Paris, 1981/1982), volume 84 of Res. Notes in Math., pp 19–73. Pitman, Boston (1983)

  10. Boccardo, L., Murat, F., Puel, J.-P.: Quelques propriétés des opérateurs elliptiques quasi linéaires. C. R. Acad. Sci. Paris Sér. I Math. 307(14), 749–752 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Boccardo, L., Murat, F., Puel, J.-P.: \(L^\infty \) estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23(2), 326–333 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, K.C.: A variant mountain pass lemma. Sci. Sin. Ser. A 26(12), 1241–1255 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Chang, K.C.: Variational methods and sub- and supersolutions. Sci. Sin. Ser. A 26(12), 1256–1265 (1983)

    MathSciNet  Google Scholar 

  14. Cuesta, M.: Existence results for quasilinear problems via ordered sub- and supersolutions. Ann. Fac. Sci. Toulouse Math. (6) 6(4), 591–608 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuesta, M., Takác, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Equ. 13(4–6), 721–746 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. Pura Appl. (4) 181(4), 407–426 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Coster, C., Jeanjean, L.: Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient. J. Differ. Equ. 262(10), 5231–5270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Figueiredo, D.G., Gossez, J.-P., Ramos Quoirin, H., Ubilla, P.: Elliptic equations involving the \(p\)-laplacian and a gradient term having natural growth. ArXiv e-prints (2017)

  19. de Figueiredo, D.G., Gossez, J.-P., Ubilla, P.: Local “superlinearity” and “sublinearity” for the \(p\)-Laplacian. J. Funct. Anal. 257(3), 721–752 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Figueiredo, D.G., Solimini, S.: A variational approach to superlinear elliptic problems. Commun. Partial Differ. Equ. 9(7), 699–717 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dinca, G., Jebelean, P., Mawhin, J.: Variational and topological methods for Dirichlet problems with \(p\)-Laplacian. Port. Math. (N.S.) 58(3), 339–378 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics, Volume 19 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1990)

    Google Scholar 

  24. Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42(7, Ser. A: Theory Methods), 1309–1326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, Volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  26. Godoy, T., Gossez, J.-P., Paczka, S.: On the antimaximum principle for the \(p\)-Laplacian with indefinite weight. Nonlinear Anal. 51(3), 449–467 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iturriaga, L., Lorca, S., Ubilla, P.: A quasilinear problem without the Ambrosetti-Rabinowitz-type condition. Proc. R. Soc. Edinburgh Sect. A 140(2), 391–398 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iturriaga, L., Souto, M.A., Ubilla, P.: Quasilinear problems involving changing-sign nonlinearities without an Ambrosetti–Rabinowitz-type condition. Proc. Edinb. Math. Soc. (2) 57(3), 755–762 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman-Lazer-type problem set on \({ R}^N\). Proc. R. Soc. Edinb. Sect. A 129(4), 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jeanjean, L., Ramos Quoirin, H.: Multiple solutions for an indefinite elliptic problem with critical growth in the gradient. Proc. Am. Math. Soc. 144(2), 575–586 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jeanjean, L., Sirakov, B.: Existence and multiplicity for elliptic problems with quadratic growth in the gradient. Commun. Partial Differ. Equ. 38(2), 244–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York, London (1968)

  33. Leonori, T., Porretta, A., Riey, G.: Comparison principles for \(p\)-Laplace equations with lower order terms. Ann. Mat. Pura Appl. (4) 196(3), 877–903 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of \(p\)-Laplacian type without the Ambrosetti-Rabinowitz condition. Nonlinear Anal. 72(12), 4602–4613 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lucia, M., Prashanth, S.: Strong comparison principle for solutions of quasilinear equations. Proc. Am. Math. Soc. 132(4), 1005–1011 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peral, I.: Multiplicity of solutions for the p-laplacian. Lecture Notes of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations (1997)

  38. Porretta, A.: On the comparison principle for \(p\)-Laplace type operators with first order terms. In: On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments, Volume 23 of Quad. Mat., pp. 459–497. Dept. Math., Seconda Univ. Napoli, Caserta (2008)

  39. Pucci, P., Serrin, J.: The Maximum Principle, Volume 73 of Progress in Nonlinear Differential Equations and their Applications, vol. 73. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  40. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12(3), 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank warmly L. Jeanjean for his help improving the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colette De Coster.

Additional information

Communicated by P. Rabinowitz.

Appendix A: Sufficient condition

Appendix A: Sufficient condition

Lemma A.1

Given \(f \in L^r(\Omega )\), \(r > \max \{ N/p,1\}\) if \(p\not =N\) and \(1<r<\infty \) if \(p=N\), let us consider

$$\begin{aligned} E_f(u) = \left( \int _{\Omega } \left( |\nabla u|^p - f(x)|u|^p\right) \, dx \right) ^{\frac{1}{p}} \end{aligned}$$

for an arbitrary \(u \in W_0^{1,p}(\Omega )\). It follows that:

  1. (i)

    If \(1< p < N\) and \(\Vert f^{+}\Vert _{N/p} < S_N\), \(E_f(u)\) is an equivalent norm in \(W_0^{1,p}(\Omega )\).

  2. (ii)

    If \(p = N\) and \(\Vert f^{+}\Vert _{r} < S_{N,r}\), \(E_f(u)\) is an equivalent norm in \(W_0^{1,p}(\Omega )\).

  3. (iii)

    If \(p > N\) and \(\Vert f^{+}\Vert _1 < S_N\), \(E_f(u)\) is an equivalent norm in \(W_0^{1,p}(\Omega )\).

where, for \(p \ne N\), \(S_N\) denotes the optimal constant in the Sobolev inequality, i.e.

$$\begin{aligned} S_N = \inf \big \{ \Vert \nabla u\Vert _p^p: u \in W_0^{1,p}(\Omega ), \Vert u\Vert _{p^{*}} = 1 \big \}, \end{aligned}$$

and, for \(p = N\),

$$\begin{aligned} S_{N,r} = \inf \left\{ \Vert \nabla u\Vert _p^p: u \in W_0^{1,p}(\Omega ), \Vert u\Vert _{\frac{Nr}{r-1}} = 1 \right\} . \end{aligned}$$

Proof

We give the proof for \(1< p < N\). The other cases can be done in the same way. First of all, by applying Hölder and Sobolev’s inequalities, observe that, for any \(h \in L^{\frac{N}{p}}(\Omega )\), it follows that

$$\begin{aligned} \int _{\Omega } h(x) |u|^p dx \le \Vert h\Vert _{\frac{N}{p}}\Vert u\Vert _{p^{*}}^p \le \frac{1}{S_N}\Vert h\Vert _{\frac{N}{p}}\Vert \nabla u\Vert _p^p. \end{aligned}$$

On the one hand, by using this inequality, observe that

$$\begin{aligned} \int _{\Omega } \left( |\nabla u|^p - f(x)|u|^p \right) \, dx \le \Vert u\Vert ^p \left( 1 + \frac{\Vert f\Vert _{\frac{N}{p}}}{S_N} \right) . \end{aligned}$$

On the other hand, following the same argument, we obtain that

$$\begin{aligned} \int _{\Omega } \left( |\nabla u|^p - f(x)|u|^p \right) \,dx\ge & {} \int _{\Omega } \left( |\nabla u|^p - f^{+}(x)|u|^p\right) \,dx \\\ge & {} \Vert u\Vert ^p\left( 1 - \frac{\Vert f^{+}\Vert _{\frac{N}{p}}}{S_N} \right) = A \Vert u\Vert ^p \end{aligned}$$

with \(A > 0\) since \(\Vert f^{+}\Vert _{\frac{N}{p}} < S_N\). The result follows. \(\square \)

As an immediate Corollary, we have a sufficient condition to ensure that \(m_p > 0\).

Corollary A.2

Recall that \(m_p\) is defined by (1.1). Under the assumptions (\(A_{1}\)), it follows that:

  1. (i)

    If \(1< p < N\), then \(\Vert h^{+}\Vert _{N/p} < \left( \frac{p-1}{\mu } \right) ^{p-1} S_N\) implies \(m_p > 0\).

  2. (ii)

    If \(p = N\), then \(\Vert h^{+}\Vert _q < \left( \frac{p-1}{\mu } \right) ^{p-1} S_{N,q}\) implies \(m_p > 0\).

  3. (iii)

    If \(p > N\), then \(\Vert h^{+}\Vert _1 < \left( \frac{p-1}{\mu } \right) ^{p-1} S_N\) implies \(m_p > 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Coster, C., Fernández, A.J. Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient. Calc. Var. 57, 89 (2018). https://doi.org/10.1007/s00526-018-1346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1346-6

Mathematics Subject Classification

Navigation