Skip to main content
Log in

A two scale \(\Gamma \)-convergence approach for random non-convex homogenization

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We propose an abstract framework for the homogenization of random functionals which may contain non-convex terms, based on a two-scale \(\Gamma \)-convergence approach and a definition of Young measures on micropatterns which encodes the profiles of the oscillating functions and of functionals. Our abstract result is a lower bound for such energies in terms of a cell problem (on large expanding cells) and the \(\Gamma \)-limits of the functionals at the microscale. We show that our method allows to retrieve the results of Dal Maso and Modica in the well-known case of the stochastic homogenization of convex Lagrangians. As an application, we also show how our method allows to stochastically homogenize a variational problem introduced and studied by Alberti and Müller, which is a paradigm of a problem where an additional mesoscale arises naturally due to the non-convexity of the singular perturbation (lower order) terms in the functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Müller, S.: A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54(7), 761–825 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allaire, G.: Mathematical approaches and methods. In: Hornung, U. (ed.) Homogenization and Porous Media. Interdisciplinary Applied Mathematics. Springer, New York (1997)

    Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. ETH Zürich, Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  4. Armstrong, S., Smart, C.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. ENS (To appear)

  5. Becker, M.E.: Multiparameter groups of measure-preserving transformations: a simple proof of Wiener’s ergodic theorem. Ann. Probab. 9(3), 504–509 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals, vol. 12. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  7. Buttazzo, G., Dal Maso, G.: Gamma limits of integral functionals. J. Anal. Math. 37, 145–185 (1980)

    Article  MATH  Google Scholar 

  8. Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization and ergodic theory. Università di Pisa. Dipartimento di Matematica (1985)

  9. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  10. Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization. Annali di Matematica Pura ed Applicata 144(1), 347–389 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duerinckx, M., Gloria, A.: Stochastic homogenization of nonconvex unbounded integral functionals with convex growth. arXiv (2015)

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn, Grundlehren der Mathematischen Wissenschaften, vol. 224, pp. xiii+513. Springer, Berlin. ISBN: 3-540-13025-X (1983)

  14. Gowrisankaran, K.: Measurability of functions in product spaces. Proc. Am. Math. Soc. 31(2), 485–488 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jirina, M.: On regular conditional probabilities. Czech. Math. J. 9, 445–450 (1959)

    MATH  MathSciNet  Google Scholar 

  16. Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kozlov, S.: Averaging of random operators. Math. USSR Sbornik. 37, 167–180 (1980)

    Article  MATH  Google Scholar 

  18. Krengel, U.: Ergodic theorems (with a supplement by A.Brunel). De Gruyter Studies in Mathematics, 6, viii+357 (1985)

  19. Modica, L., Mortola, S.: Un esempio di \(\Gamma \)-convergenza. Boll. Un. Mat. Ital. (5) 14–B, 285–299 (1977)

    MATH  MathSciNet  Google Scholar 

  20. Müller, S.: Homogenization of non-convex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal. 99(3), 189–212 (1987)

    Article  MATH  Google Scholar 

  21. Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Cal. Var. Partial Differ. Equ. 1(2), 169–204 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Papanicolaou, G., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Proceedings of Conference on Random Fields, Esztergom, Hungary, 1979. Seria Colloquia Mathematica Societatis Janos Bolyai27, 835–873 (1981)

  23. Rivière, N.M.: Singular integrals and multiplier operators. Ark. Mat. 9, 243–278 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sandier, E., Serfaty, S.: From Ginzburg–Landau to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schwartz, L.: Lectures on Disintegration of Measures. Tata Lecture Notes (1975)

  27. Xanh, Nguyen Xuan, Zessin, Hans: Ergodic theorems for spatial processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 48, 133–158 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, vol. 120, Springer, New York (1989)

Download references

Acknowledgements

The authors wish to thank the referee for his/her careful reading of the manuscript and comments. They also wish to thank V. Bergelson and E. Lesigne for pointing them to references [27] and [18]. The work of L.B. and E.S. was partially supported by NSF Grants DMS-1405769 and DMS-1106666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Sandier.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlyand, L., Sandier, E. & Serfaty, S. A two scale \(\Gamma \)-convergence approach for random non-convex homogenization. Calc. Var. 56, 156 (2017). https://doi.org/10.1007/s00526-017-1249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1249-y

Mathematics Subject Classification

Navigation