Skip to main content
Log in

A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let M be a closed and connected manifold, \(H:T^*M\times {{\mathbb {R}}}/\mathbb {Z}\rightarrow \mathbb {R}\) a Tonelli 1-periodic Hamiltonian and \({\mathscr {L}}\subset T^*M\) a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if \({\mathscr {L}}\) is invariant by the time-one map of H, then \({\mathscr {L}}\) is a graph over M. An interesting consequence in the autonomous case is that in this case, \({\mathscr {L}}\) is invariant by all the time t maps of the Hamiltonian flow of H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This will be defined in Sect. 1.1.

References

  1. Arnaud, M.-C.: On a Theorem due to Birkhoff. Geom. Funct. Anal. 20, 1307–1316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnaud, M.-C.: When are the invariant submanifolds of symplectic dynamics Lagrangian? Discret. Contin. Dyn. Syst. 34(5), 18111827 (2014)

    MathSciNet  Google Scholar 

  3. Bernard, P.: The dynamics of pseudographs in convex Hamiltonian systems. J. Am. Math. Soc. 21(3), 615–669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard, P., Santos, J.O.: A geometric definition of the Mañé-Mather set and a Theorem of Marie-Claude Arnaud. Math. Proc. Camb. Philos. Soc. 152(1), 167–178 (2012)

    Article  MATH  Google Scholar 

  5. Bialy, M., Polterovich, L.: Hamiltonian diffeomorphisms and Lagrangian distributions. Geom. Funct. Anal. 2, 173–210 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bialy, M., Polterovich, L.: Hamiltonian systems, Lagrangian tori and Birkhoff’s theorem. Math. Ann. 292(4), 619–627 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.D.: Surface transformations and their dynamical application. Acta Math. 43, 1–119 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunella, M.: On a theorem of Sikorav. Enseign. Math. (2) 37(1–2), 83–87 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Chaperon, M.: Lois de conservation et géométrie symplectique. C.R. Acad. Sci. 312, 345–348 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Clarke, F.: Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Avanced Texts. Wiley, New York (1983)

    Google Scholar 

  11. Fathi, A.: Weak KAM Theorems in Lagrangian Dynamics (book in preparation)

  12. Fathi, A., Maderna, E.: Weak KAM theorem on non compact manifolds. NoDEA Nonlinear Differ. Equ. Appl. 14(1–2), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golé, C.: Symplectic twist map. Global variational techniques. Advanced Series in Nonlinear Dynamics, vol. 18. World Scientific Publishing Co. Inc., River Edge, NJ (2001)

  14. Herman, M.: Sur les courbes invariantes par les difféomorphismes de l’anneau, vol. 1, pp. 103–104. Asterisque (1983)

  15. Herman, M.: Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques., vol. I. Inst. Hautes Études Sci. Publ. Math. 70, 47–101 (1989)

    Article  MATH  Google Scholar 

  16. Herman, M.: Dynamics connected with indefinite normal torsion. In: McGehee, R., Meyer, K.R. (eds.) Twist mappings and their applications. The IMA Volumes in Mathematics and its Applications, vol. 44, pp. 153–182. Springer, New York (1992)

  17. Massey, W.S.: A basic course in algebraic topology. In: Graduate Texts in Mathematics, vol. 127, pp. xvi+428. Springer, New York (1991)

  18. Mather, J.: Action minimizing measures for positive definite Lagangian systems. Math. Z. 207, 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moser, J.: Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff. In: Geometry and Topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pp. 464–494. Lecture Notes in Mathematics, vol. 597. Springer, Berlin (1977)

  20. Paternain, G.P., Polterovich, L., Siburg, K.E.: Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory. Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. Mosc. Math. J. 3(3), 593–619 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Siburg, K.F.: The principle of least action in geometry and dynamics. In: Lecture Notes in Mathematics, vol. 1844, pp. xii+128. Springer, Berlin (2004)

  22. Sikorav, J.-C.: Problèmes d’intersections et de points fixes en géométrie hamiltonienne. Comment. Math. Helv. 62(1), 62–73 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Théret, D.: A complete proof of Viterbo’s uniqueness theorem on generating functions. Topology Appl. 96(3), 249–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292(4), 685–710 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank sincerely the referee for many valuable suggestions and comments, who greatly improve the the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Venturelli.

Additional information

Communicated by P. Rabinowitz.

The authors are supported by ANR-12-BLAN-WKBHJ and by the Regional Program MATHAMSUD 17-MATH-07

Marie-Claude Arnaud: member of the Institut universitaire de France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaud, MC., Venturelli, A. A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians. Calc. Var. 56, 122 (2017). https://doi.org/10.1007/s00526-017-1210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1210-0

Mathematics Subject Classification

Navigation