Skip to main content
Log in

Concavity of the Lagrangian phase operator and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Dirichlet problem for the Lagrangian phase operator, in both the real and complex setting. Our main result states that if \(\Omega \) is a compact domain in \({\mathbb {R}}^{n}\) or \({\mathbb {C}}^n\), then there exists a solution to the Dirichlet problem with right-hand side h(x) satisfying \(|h(x)| > (n-2)\frac{\pi }{2}\) and boundary data \(\varphi \) if and only if there exists a subsolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brendle, S., Warren, M.: A boundary value problem for minimal Lagrangian graphs. J. Differ. Geom. 84, 267–287 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampere equations. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampere and uniformly elliptic equations. Commun. Pure Appl. Math. 38, 209–252 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chou, K.S., Wang, X.J.: A variational theory of the Hessian equation. Commun. Pure Appl. Math. 54, 1029–1064 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins, T., Jacob, A., Yau, S.T.: \((1,1)\) forms with specified Lagrangian phase. arXiv:1508.01934

  7. Evans, L.C.: Classical solutions of fully nonlinear, convex, second order elliptic equations. Commun. Pure Appl. Math. 35, 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Guan, B.: Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163(8), 1491–1524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guan, B.: The Dirichlet problem for complex Monge-Ampere equations and regularity of the pluri-complex Green function. Commun. Anal. Geom. 6, 687–703 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guan, B.: The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds. arXiv:1403.2133

  12. Guan, B.: The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 8, 45–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guan, B.: The Dirichlet problem for a class of fully nonlinear elliptic equations. Calc. Var. Partial Differ. Equ. 19, 399–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guan, B., Qun, L.: The Dirichlet problem for a complex Monge-Ampere type equation on Hermitian manifolds. Adv. Math. 246, 351–367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guan, B., Sun, W.: On a class of fully nonlinear elliptic equations on Hermitian manifolds. Calc. Var. Partial Differ. Equ. 54(1), 901–916 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guan, P., Zhang, X.: A class of curvature type equations, (Personal Communications)

  17. Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76, 620–630 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, R., Lawson, B.: Calibrated geometries. Acta Math. 148(1), 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivochkina, N.M.: Classical solvability of the Dirichlet problem for the Monge-Ampere equation. Zap. Nauchn. Sere. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131, 72–79 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Ivochkina, N.M.: The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge-Ampere type. Math. Sb. (N.S.) 112(154)(2(6)), 193–206 (1980)

    MathSciNet  Google Scholar 

  21. Ivochkina, N.M., Trudinger, N., Wang, X.J.: The Dirichlet problem for degenerate Hessian equations. Commun. Partial Differ. Equ. 29, 219–235 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jacob, A., Yau, S.T.: A special Lagrangian type equation for holomorphic line bundles. arXiv:1411.7457

  23. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Ross. Akad. Nauk Seriya. Mat 47, 75–108 (1983)

    MathSciNet  Google Scholar 

  24. Krylov, N.V.: On degenerate nonlinear elliptic equations. Math. Sb. 121, 301–330 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Leung, N.C., Yau, S.-T., Zaslow, E.: From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform. Adv. Theor. Math. Phys. 4(6), 1319–1341 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, S.Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8, 087–106 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mariño, M., Minasian, R., Moore, G., Strominger, A.: Nonlinear instantons from supersymmetric \(p\)-branes. J. High Energy Phys. 2000(1), 5, 32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nadirashvili, N., Vlăduţ, S.: Singular solution to the special Lagrangian equations. Ann. Inst. Henri. Poincaré Anal. Non Linéaire 27(5), 1179–1188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stromginer, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is \(T\)-duality. Nuclear Phys. B 479(1–2), 243–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Székelyhidi, G.: Fully non-linear elliptic equations on compact Hermitian manifolds. arXiv:1501.02762v3

  31. Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ. 54(1), 431–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trudinger, N.: On the Dirichlet problem for Hessian equations. Acta Math. 175(2), 151–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, D., Yuan, Y.: Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions. Am. J. Math. 136, 481–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, D., Yuan, Y.: Singular solutions to the special Lagrangian equations with subcritical phases and minimal surface systems. Am. J. Math 135(5), 1157–1177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, M.-T.: Some recent developments in Lagrangian mean curvature flows. In: Yau, S,T. (ed) Surveys in Differential Geometry, vol. X II Geometric Flows. Int. Press, Somerville (2008)

  36. Wang, M.-T.: Interior gradient bounds for solutions of minimal surface systems. Am. J. Math. 126, 921–934 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.: On the \(C^{2,\alpha }\)-regularity of the complex Monge-Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

    MathSciNet  Google Scholar 

  38. Warren, M., Yuan, Y.: Hessian and gradient estimates for three dimensional special Lagrangian equations with large phase. Am. J. Math. 132, 751–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, Y.: Global solutions to special Lagrangian equations. Proc. Am. Math. Soc. 134(5), 1355–1358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank D.H. Phong for all his guidance and support. We also thank Pei-Ken Hung for many helpful discussions. The authors are grateful to Valentino Tosatti and Mu-Tao Wang for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wu.

Additional information

Communicated by O.Savin.

Supported in part by National Science Foundation Grants DMS-1506652 (T.C.C.) and DMS-12-66033 (S.P.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, T.C., Picard, S. & Wu, X. Concavity of the Lagrangian phase operator and applications. Calc. Var. 56, 89 (2017). https://doi.org/10.1007/s00526-017-1191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1191-z

Mathematics Subject Classification

Navigation