Skip to main content
Log in

On Willmore Legendrian surfaces in \(\mathbb {S}^5\) and the contact stationary Legendrian Willmore surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study Willmore Legendrian surfaces (that is Legendrian surfaces which are critical points of the Willmore functional). We use an equality proved in Luo (arXiv:1211.4227v6) to get a relation between Willmore Legendrian surfaces and contact stationary Legendrian surfaces in \(\mathbb {S}^5\), and then we use this relation to prove a classification result for Willmore Legendrian spheres in \(\mathbb {S}^5\). We also get an integral inequality for Willmore Legendrian surfaces and in particular we prove that if the square length of the second fundamental form of a Willmore Legendrian surface in \(\mathbb {S}^5\) belongs to [0, 2], then it must be 0 and L is totally geodesic or 2 and L is a flat minimal Legendrian tori, which generalizes the result of Yamaguchi et al. (Proc Am Math Soc 54:276–280, 1976). We also study variation of the Willmore functional among Legendrian surfaces in 5-dimensional Sasakian manifolds. Let \(\Sigma \) be a closed surface and \((M,\alpha ,g_\alpha ,J)\) a 5-dimensional Sasakian manifold with a contact form \(\alpha \), an associated metric \(g_\alpha \) and an almost complex structure J. Assume that \(f:\Sigma \mapsto M\) is a Legendrian immersion. Then f is called a contact stationary Legendrian Willmore surface (in short, a csL Willmore surface) if it is a critical point of the Willmore functional under contact deformations. To investigate the existence of csL Willmore surfaces we introduce a higher order flow which preserves the Legendre condition and decreases the Willmore energy. As a first step we prove that this flow is well posed if \((M,\alpha ,g_\alpha ,J)\) is a Sasakian Einstein manifold, in particular \(\mathbb {S}^5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, D.E.: Reimannian geometry of contact and symplectic manifolds, Progress in Math, vol. 203. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  2. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castro, I., Li, H.Z., Urbano, F.: Hamiltonian-minimal Lagrangian submanfolds in complex space form. Pac. J. Math. 227, 43–65 (2006)

    Article  MATH  Google Scholar 

  4. Castro, I., Urbano, F.: Willmore surfaces of \(\mathbb{R}^4\) and the Whitney sphere. Ann. Glob. Anal. Geom. 19, 153–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B.Y.: Some conformal invariants of submanifolds and their applications. Boll. Un. Mat. Ital. 10, 380–385 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Ejiri, N.: Willmore surfaces with a duality in \({\mathbb{S}}^N(1)\). Proc. Math. Lond. Soc. 57, 383–416 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geiges, H.: An introduction to contact topology, Cambridge studies in advanced mathematics, vol. 109. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  8. Harvey, R., Lawson, B.: Calibrated geometries. Acta Math. 148, 48–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Lecture Notes in Math., vol. 1713, pp. 45–84 (1999)

  10. Iriyeh, H.: Hamitonian minimal Lagrangian cones in \({\mathbb{C}}^m\). Tokyo J. Math. 28, 91–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lê, H.V.: A minimizing deformation of Legendrian submanifolds in the standard sphere. Differ. Geom. Appl. 21, 297–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lê, H.V., Wang, G.F.: Anti-complexified Ricci flow on compact symplectic manifolds. J. Reine Angew. Math. 530, 17–31 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Li, H.Z.: Willmore hypersurfaces in a sphere. Asian J. Math. 5, 365–378 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, H.Z.: Willmore surfaces in \({\mathbb{S}}^n\). Ann. Glob. Anal. Geom. 8, 203–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H.Z.: Willmore submanifolds in a sphere. Math. Res. Lett. 9, 771–790 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, Y.: Contact stationary Legendrian surfaces in \({\mathbb{S}}^5\). arXiv:1211.4227v6 (submitted)

  17. Luo, Y., Wang, G.F.: On geometrically constrained variational problems of the Willmore functional I: the Lagrangian Willmore problem. Commun. Anal. Geom. 23, 191–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, X., Wang, C.P., Wang, P.: Classification of Willmore 2-spheres in the 5-dimensional sphere. arXiv:1409.2427v2 (2014) (preprint)

  19. Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Am. Math. Soc. 352, 4469–4486 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Musso, E.: Willmore surfaces in the four-sphere. Ann. Glob. Anal. Geom. 8(1), 21–41 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smoczyk, K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240, 849–883 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smoczyk, K.: Closed Legendre geodesics in Sasaki manifolds. N. Y. J. Math. 9, 23–47 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Thomsen, G.: Über konforme Geometrie I; Grundlagen der konformen Flachentheorie. Abh. Math. Semin. Univ. Hambg. 3(1), 31–56 (1924)

    Article  MATH  Google Scholar 

  24. Weiner, J.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27, 19–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. White, J.H.: A global invirant of conformal mappings in space. Proc. Am. Math. Soc. 38, 162–164 (1973)

    Article  Google Scholar 

  26. Yamaguchi, S., Kon, M., Miyahara, Y.: A theorem on C-totally real minimal surface. Proc. Am. Math. Soc. 54, 276–280 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Yau, S.T.: Submanifolds with constant mean curvature I. Am. J. Math. 96, 346–366 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author started this project when he was a Ph.D. student of professor Guofang Wang at Albert-Ludwigs Universität Freiburg. He is very appreciated with Guofang Wang for stimulating discussions and constant support. The author is partially supported by the NSF of China (No.11501421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Luo.

Additional information

Communicated by F. Helein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y. On Willmore Legendrian surfaces in \(\mathbb {S}^5\) and the contact stationary Legendrian Willmore surfaces. Calc. Var. 56, 86 (2017). https://doi.org/10.1007/s00526-017-1183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1183-z

Mathematics Subject Classification

Navigation