Skip to main content
Log in

Semi-stable Higgs sheaves and Bogomolov type inequality

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study semi-stable Higgs sheaves over compact Kähler manifolds. We prove that there is an admissible approximate Hermitian-Einstein structure on a semi-stable reflexive Higgs sheaf and consequently, the Bogomolov type inequality holds on a semi-stable reflexive Higgs sheaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Cónsul, L., García-Prada, O.: Dimensional reduction, \(SL(2, \mathbb{C})\)-equivariant bundles and stable holomorphic chains. Int. J. Math. 12(2), 159–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Hirzebruch, F.: Analytic cycles on complex manifolds. Topology 1, 25–45 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biquard, O.: On parabolic bundles over a complex surface. J. Lond. Math. Soc. 53(2), 302–316 (1996)

    Article  MATH  Google Scholar 

  4. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Comm. Math. Phys. 135, 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bradlow, S.B., García-Prada, O.: Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304(2), 225–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bando, S., Siu, Y.T.: Stable Sheaves and Einstein-Hermitian Metrics, in Geometry and Analysis on Complex Manifolds. World Scientific Publication, River Edge, NJ (1994)

    MATH  Google Scholar 

  7. Biswas, I., Schumacher, G.: Yang-Mills equation for stable Higgs sheaves. Int. J. Math. 20(5), 541–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR Izvestija 13(3), 499–555 (1979)

    Article  MATH  Google Scholar 

  9. Bruasse, L.: Harder-Narasimhan filtration for complex bundles or torsion-free sheaves. Ann. Inst. Fourier 53(2), 541–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruzzo, U., Graña, B.: Metrics on semistable and numerically effective Higgs bundles. J. Reine Angew. Math. 612, 59–79 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Cardona, S.A.H.: Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case. Ann. Global Anal. Geom. 42(3), 349–370 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardona, S.A.H.: Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles II: Higgs sheaves and admissible structure. Ann. Global Anal. Geom. 44(4), 455–469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, S.Y., Li, P.: Heat kernel estimates and lower bound of eigenvalues. Comment. Math. Helv. 56(3), 327–338 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Bartolomeis, P., Tian, G.: Stability of complex vector bundles. J. Differ. Geom. 43(2), 231–275 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donaldson, S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18(2), 269–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donaldson, S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50(1), 1–26 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donaldson, S.K.: Infinite determinants, stable bundles and curvature. Duke Math. J. 54(1), 231–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. García-Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5(1), 1–52 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer, Berlin, (1983)

  20. Green, H.: Chern classes for coherent sheaves, PhD thesis, University of Warwick, 1980

  21. Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  22. Grigor’yan, A.: Gaussian upper bounds for the heat hernel on arbitrary manifolds. J. Differ. Geom. 45(1), 33–52 (1997)

    Article  MATH  Google Scholar 

  23. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55(1), 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero: I-II. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hironaka, H.: Flattening theorem in complex-analytic geometry. Amer. J. Math. 97(2), 503–547 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huybrechts, D., Lehn, M.: Stable pairs on curves and surfaces. J. Algebr. Geom. 4(1), 67–104 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Jacob, A.: Existence of approximate Hermitian-Einstein structures on semi-stable bundles. Asian J. Math. 18(5), 859–883 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jost, J., Zuo, K.: Harmonic maps and \(Sl(r, C)\)-representations of fundamental groups of quasiprojective manifolds. J. Algebr. Geom. 5(1), 77–106 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Kobayashi, S.: Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15. Kano Memorial Lectures, 5. Princeton University Press, Princeton, NJ (1987)

  30. Lan, G., Sheng, M., Zuo, K.: Semistable Higgs bundles and representations of algebraic fundamental groups: positive characteristic case, (2012), arXiv:1210.8280v1

  31. Langer, A.: Bogomolov’s inequality for Higgs sheaves in positive characteristic. Invent. Math. 199(3), 889–920 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, J., Yau, S.T.: Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986), 560–573, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987

  33. Li, J.Y.: Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds. Commun. Anal. Geom. 8(3), 445–475 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, J.Y., Narasimhan, M.S.: Hermitian-Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.) 15(1), 93–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, J.Y., Zhang, X.: The gradient flow of Higgs pairs. J. Eur. Math. Soc. 13(5), 1373–1422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J.Y., Zhang, X.: Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc. Var. Partial Differ. Equ. 52(3–4), 783–795 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J.Y., Zhang, X.: The limit of the Yang-Mills-Higgs flow on Higgs bundles. Int. Math. Res. Not. 2017(1), 232–276 (2017)

    Article  Google Scholar 

  38. Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles and an application, Astérisque, 309. Soc. Math. France, Paris (2006)

  39. Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles II. Geom. Topol. 13(1), 359–455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mundet, I., Riera, i: A Hitchin-Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82, 540–567 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  42. Serre, J.-P.: Prolongement de faisceaux analytiques cohérents. Ann. Inst. Fourier 16(1), 363–374 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sibley, B.: Asymptotics of the Yang-Mills flow for holomorphic vector bundles over Kähler manifolds: the canonical structure of the limit. J. Reine Angew. Math. 706, 123–191 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Simpson, C.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Simpson, C.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Siu, Y.T.: Extension of locally free analytic sheaves. Math. Ann. 179, 285–294 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  47. Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39(S, suppl.), S257–S293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Additional information

Communicated by J. Jost.

The authors were supported in part by NSF in China, Nos. 11625106, 11571332, 11526212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, C. & Zhang, X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. 56, 81 (2017). https://doi.org/10.1007/s00526-017-1174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1174-0

Mathematics Subject Classification

Navigation