Skip to main content
Log in

On the p-Laplacian with Robin boundary conditions and boundary trace theorems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define

$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$

where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics

$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$

where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of \(n\)-body Schrödinger Operators. Mathematical Notes, vol. 29. Princeton University Press, Princeton (1982)

  2. Bareket, M.: On an isoperimetric inequality for the first eigenvalue of a boundary value problem. SIAM J. Math. Anal. 8(2), 280–287 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belaud, Y., Helffer, B., Véron, L.: Long-time vanishing properties of solutions of some semilinear parabolic equations. Ann. Inst. Henri Poincaré Anal. Nonlinear 18, 43–68 (2001)

  4. Bhattacharya, T.: Radial symmetry of the first eigenfunction for the \(p\)-Laplacian in the ball. Proc. Am. Math. Soc. 104, 169–174 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Bruneau, V., Popoff, N.: On the negative spectrum of the Robin Laplacian in corner domains. Anal. PDE 9, 1259–1283 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bucur, D., Daners, D.: An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ. 37, 75–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burenkov, V.I.: Extension theory for Sobolev spaces on open sets with Lipschitz boundaries. In: Krbec, M., Kufner, A. (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 6, pp. 1–49. Acad Sci. Czech Rep, Prague (1999)

    Google Scholar 

  8. Dai, Q.-Y., Fu, Y.-X.: Faber-Krahn inequality for Robin problems involving p-Laplacian. Acta Math. Appl. Sin. Engl. Ser. 27, 13–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daners, D., Kennedy, J.: On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integral Equ. 23, 659–669 (2010)

    MathSciNet  MATH  Google Scholar 

  10. del Pino, M., Flores, C.: Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Commun. Partial Differ. Equ. 26, 2189–2210 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. Ser. A Theory Methods Appl. 7, 827–850 (1983)

  12. Ekholm, T., Frank, R.L., Kovařík, H.: Weak perturbations of the p-Laplacian. Calc. Var. Partial Differ. Equ. 54, 781–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekholm, T., Kovařík, H., Laptev, A.: Hardy inequalities for \(p\)-Laplacians with Robin boundary conditions. Nonlinear Anal. Ser. A Theory Methods Appl. 128, 365–379 (2015)

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Exner, P., Minakov, A.: Curvature-induced bound states in Robin waveguides and their asymptotical properties. J. Math. Phys. 55, 122101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernandez Bonder, J., Rossi, J.D.: Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Commun. Pure. Appl. Anal. 1, 75–94 (2002)

  17. Ferone, V., Nitsch, C., Trombetti, C.: On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue. Commun. Pure Appl. Anal. 14, 63–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferone, V., Nitsch, C., Trombetti, C.: On the maximal mean curvature of a smooth surface. C. R. Acad. Sci. Paris Ser. I. 354, 891–895 (2016)

  19. Freitas, P., Krejčiřík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, J.H.G.: Curvature measures and generalized Morse theory. J. Differ. Geom. 30, 619–642 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giorgi, T., Smits, R.: Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity. Z. Angew. Math. Phys. 58(2), 224–245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Non-smooth Domains. Classics in Applied Mathematica. Pitman, Boston (1985)

    MATH  Google Scholar 

  23. Helffer, B., Kachmar, A.: Eigenvalues for the Robin Laplacian in domains with variable curvature. Trans. Am. Math. Soc. 369, 3253–3287 (2017)

  24. Helffer, B., Kachmar, A., Raymond, N.: Tunneling for the Robin Laplacian in smooth planar domains. Commun. Contemp. Math. 19, 1650030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Levitin, M., Parnovski, L.: On the principal eigenvalue of a Robin problem with a large parameter. Math. Nachr. 281, 272–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lotoreichik, V.: Lower bounds on the norms of extension operators for Lipschitz domains. Oper. Matrices 8, 573–592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou, Y., Zhu, M.: A singularly perturbed linear eigenvalue problem in \(C^1\) domains. Pac. J. Math. 214, 323–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martínez, S., Rossi, J.D.: Isolation and simplicity for the first eigenvalue of the \(p\)-Laplacian with a nonlinear boundary condition. Abstr. Appl. Anal. 7, 287–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pankrashkin, K.: On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains. Nanosyst. Phys. Chem. Math. 4, 474–483 (2013)

    MATH  Google Scholar 

  30. Pankrashkin, K.: An inequality for the maximum curvature through a geometric flow. Arch. Math. (Basel) 105, 297–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pankrashkin, K., Popoff, N.: Mean curvature bounds and eigenvalues of Robin Laplacians. Calc. Var. Partial Differ. Equ. 54, 1947–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pankrashkin, K., Popoff, N.: An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter. J. Math. Pures Appl. 106, 615–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rossi, J.D.: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 2, pp. 311–406. Elsevier, Amsterdam (2005)

    Google Scholar 

  34. Rossi, J.D.: First variations of the best Sobolev trace constant with respect to the domain. Can. Math. Bull. 51, 140–145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for a detailed reading of our paper and for many valuable comments, in particular, on the computations of Remark 6.3. H. K. has been partially supported by Gruppo Nazionale per Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The support of MIUR-PRIN2010-11 grant for the project “Calcolo delle variazioni” (H. K.), is also gratefully acknowledged. K.P. has been partially supported by CNRS GDR 2279 DynQua. The authors thank Carlo Nitsch and Cristina Trombetti for useful comments on a preliminary version of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynek Kovařík.

Additional information

Communicated by L. Ambrosio.

Appendices

Appendix 1: Solvable cases

For the sake of completeness, let us mention some cases in which \(\Lambda (\Omega ,p,\alpha )\) can be computed explicitly.

Proposition 6.7

For any \(p\in (1,\infty )\) and \(\alpha >0\) there holds \(\Lambda (\mathbb {R}_+,p,\alpha )=(1-p)\alpha ^\frac{p}{p-1}\), and the minimizer \(u_*\) for Eq. (1) is given by \(u_*(t)=\exp \big (-\alpha ^{\frac{1}{p-1}} t\big )\).

Proof

By computing the right-hand side of (1) for \(u=u_*\) we obtain the inequality \(\Lambda (\mathbb {R}_+,p,\alpha )\le (1-p)\alpha ^\frac{p}{p-1}\). For the reverse inequality, we remark that \(\lim _{x\rightarrow +\infty } u(x)=0\) for any \(u\in W^{1,p}(\mathbb {R}_+)\). Indeed, since \(|u|^{p-1} | u|'\in L^1(\mathbb {R}_+)\), by the the Hölder inequality, it follows that the limit

$$\begin{aligned} \lim _{x\rightarrow \infty } \big |u(x)\big |^p= \lim _{x\rightarrow \infty } p\int _0^{x} \big | u\big |^{p-1} | u|' \,\mathrm {d}t + \big |u(0)\big |^p \end{aligned}$$

exists and therefore must be equal to zero. Hence

$$\begin{aligned} \big |u(0)\big |^p= & {} -p\int _0^{+\infty } \big | u\big |^{p-1} | u|' \,\mathrm {d}t \le p\int _0^{+\infty } \big | u\big |^{p-1} \big || u|'\big | \,\mathrm {d}t\le p\Vert u\Vert _p^{p-1} \big \Vert |u|' \big \Vert _p\\\le & {} p\Vert u\Vert ^{p-1}_p \Vert u'\Vert _p, \end{aligned}$$

and we have

$$\begin{aligned}&\inf _{\begin{array}{c} u\in W^{1,p}(\mathbb {R}_+)\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _0^{+\infty } \big |u'(t)\big |^p \mathrm {d}t - \alpha \big |u(0)\big |^p}{\displaystyle \int _0^{+\infty } |u(t)|^p\mathrm {d}t} = \inf _{\begin{array}{c} v\in W^{1,p}(\mathbb {R}_+)\\ \Vert v\Vert _p=1 \end{array}} \Big ( \Vert v'\Vert ^p_p - \alpha \big |v(0)\big |^p\Big )\\&\quad \ge \inf _{\begin{array}{c} v\in W^{1,p}(\mathbb {R}_+)\\ \Vert v\Vert _p=1 \end{array}} \Big ( \Vert v'\Vert ^p_p - \alpha p \Vert v'\Vert _p\Big ) \ge \inf _{x\in \mathbb {R}_+} (x^p-p\alpha x)=(1-p)\alpha ^\frac{p}{p-1}, \end{aligned}$$

which gives the sought result. \(\square \)

As observed in [25], the one-dimensional result can be used to study the infinite planar sectors

$$\begin{aligned} U_\theta := \big \{ (x_1,x_2)\in \mathbb {R}^2: \big |\arg (x_1+i x_2)\big |<\theta \big \}, \quad 0<\theta <\pi . \end{aligned}$$

Proceeding literally as in Lemma 2.6 and Lemma 2.8 of [25] one arrives at the following result:

Proposition 6.8

Let \(\alpha >0\) and \(p\in (1,+\infty )\), then for \(\theta \ge \dfrac{\pi }{2}\) there holds \(\Lambda (U_\theta ,p,\alpha )=(1-p)\alpha ^\frac{p}{p-1}\). On the other hand, for \(\theta <\dfrac{\pi }{2}\) the infimum is attained on

$$\begin{aligned} u(x_1,x_2)=\exp \Big (- \Big (\dfrac{\alpha }{\sin \theta }\Big )^{\frac{1}{p-1}}x_1\Big ), \end{aligned}$$

and satisfies

$$\begin{aligned} \Lambda (U_\theta ,p,\alpha )=(1-p)\Big (\dfrac{\alpha }{\sin \theta }\Big )^\frac{p}{p-1}<(1-p)\alpha ^\frac{p}{p-1}. \end{aligned}$$

Appendix 2: An auxiliary inequality

Proposition 6.9

Let \(p>1\), then for any \(\varepsilon \in (0,1]\) and for all \(a,b\ge 0\) there holds

$$\begin{aligned} (a+b)^p\le (1+\varepsilon ) a^p +\big (1-2^{\frac{1}{1-p}}\big )^{1-p}\, \dfrac{b^p}{\varepsilon ^{p-1}}\, . \end{aligned}$$

Proof

By homogenity, it is sufficient to show that \((1+t)^p\le (1+\varepsilon ) t^p+ c\varepsilon ^{1-p}\) for all \(t\ge 0\). Denote \(f_\varepsilon (t):=(1+t)^p-(1+\varepsilon ) t^p\), then one simply needs an upper estimate for \(C(\varepsilon ):=\varepsilon ^{p-1}\sup _{t\in \mathbb {R}_+}f_\varepsilon (t)\). We have \(f_\varepsilon (0)=1\) and \(f_\varepsilon (+\infty )=-\infty \). The equation \(f'_\varepsilon (t)=0\) has a unique solution

$$\begin{aligned} t=t_\varepsilon =\dfrac{1}{(1+\varepsilon )^{\frac{1}{p-1}}-1}, \quad f(t_\varepsilon )=\dfrac{1+\varepsilon }{\big ((1+\varepsilon )^{\frac{1}{p-1}}-1\big )^{p-1}}, \end{aligned}$$

implying

$$\begin{aligned} C(\varepsilon )=\max \Big \{\dfrac{\varepsilon ^{p-1}(1+\varepsilon )}{\big ((1+\varepsilon )^{\frac{1}{p-1}}-1\big )^{p-1}},1\Big \}. \end{aligned}$$

Denote \(\sigma :=(1+\varepsilon )^{\frac{1}{p-1}}-1\), then

$$\begin{aligned} \sup _{\varepsilon \in (0,1)} \dfrac{\varepsilon ^{p-1}(1+\varepsilon )}{\big ((1+\varepsilon )^{\frac{1}{p-1}}-1\big )^{p-1}} =\sup _{\sigma \in (0,\sigma _1)}\Big (\dfrac{(1+\sigma )^p-(1+\sigma )}{\sigma }\Big )^{p-1}, \quad \sigma _1:= 2^{\frac{1}{p-1}}-1. \end{aligned}$$

Using the convexity of \(\varphi (\sigma )=(1+\sigma )^p-(1+\sigma )\) we have

$$\begin{aligned} \varphi (\sigma )\le \varphi (0) + \dfrac{\varphi (\sigma _1)-\varphi (0)}{\sigma _1}\, \sigma \equiv \dfrac{2^{\frac{1}{p-1}}}{2^{\frac{1}{p-1}}-1}\, \sigma , \quad \sigma \in (0,\sigma _1). \end{aligned}$$

Since \(\big (1-2^{\frac{1}{1-p}}\big )^{1-p} > 1\), this gives the sought inequality. \(\square \)

Appendix 3: Remainder estimates for more regular domains

If a stronger regularity of \(\Omega \) is imposed, the remainder in Theorem 1.1 can be made more explicit.

Proposition 6.10

In Theorem 1.1 assume additionally that the boundary of \(\Omega \) it \(C^3\) smooth and that the mean curvature attains the maximum value \(H_\mathrm {max}\), then the remainder estimate in (5) can be improved to \(\mathcal {O}(\alpha ^{1-\kappa })\) with

$$\begin{aligned} \kappa ={\left\{ \begin{array}{ll} \dfrac{1}{p+1}, &{} p\in (1,2],\\ \dfrac{1}{3(p-1)}, &{} p \in (2,\infty ). \end{array}\right. } \end{aligned}$$
(48)

If, in addition, \(\Omega \) is \(C^4\) smooth, then one can take

$$\begin{aligned} \kappa ={\left\{ \begin{array}{ll} \dfrac{2}{p+2}, &{} p\in (1,2],\\ \dfrac{1}{2(p-1)}, &{} p \in (2,\infty ). \end{array}\right. } \end{aligned}$$
(49)

Proof

Remark first that the result of Sect. 5 imply

$$\begin{aligned} \Lambda (\Omega ,p,\alpha )\ge (1-p)\alpha ^{\frac{p}{p-1}}-(\nu -1) H_\mathrm {max}\alpha +\mathcal {O}(\alpha ^{\frac{p}{p-1}}\log \alpha ), \end{aligned}$$

and \(\alpha ^{\frac{p}{p-1}}\log \alpha =o(\alpha ^{1-\kappa })\) for \(\kappa \) given by (48) or (49). Therefore, it is sufficient to show the upper bound, which will be done by taking another test function in the computations of Sect. 4.

Let \(s_0\in S\) be such that \(M(s_0)=M_\mathrm {max}\). As \(\partial \Omega \) is \(C^3\) smooth, then M is \(C^1\), and for some \(m\ge 0\) we have \(-M_\mathrm {max}\le -M(s)\le -M_\mathrm {max}+ m d(s,s_0)\) with \(d(\cdot ,\cdot )\) standing for the geodesic distance on S and for s sufficiently close to \(s_0\).

Let us choose a function \(f\in C_c^\infty (\mathbb {R})\) which equals 1 in a neighborhood of the origin and consider the functions \(v\in W^{1,p}(S)\) given by

$$\begin{aligned} v(s)= f\Big (\dfrac{d(s,s_0)}{\mu }\Big ), \end{aligned}$$
(50)

where \(\mu \) is a positive parameter which tends to 0 as \(\beta \rightarrow +\infty \) and will be chosen later. One can estimate, for large \(\beta \),

$$\begin{aligned} \begin{aligned} A:=\int _S \big |v(s)\big |^p \mathrm {d}\sigma (s)&=a \mu ^{\nu -1}+\mathcal {O}(\mu ^\nu ),\quad A^{-1}=\mathcal {O}(\mu ^{1-\nu }),\\ \int _S \big (-M(s)\big ) \big |v(s)\big |^p \mathrm {d}\sigma (s)&= -M_\mathrm {max}A + \mathcal {O}(\mu ^\nu ),\\ \int _S \big |\nabla v(s)\big |^p\mathrm {d}\sigma (s)&=\mathcal {O}(\mu ^{\nu -p-1}). \end{aligned} \end{aligned}$$
(51)

Consider first the case \(p\in (1,2]\). The substitution into (18) gives

$$\begin{aligned}&\Lambda ^+(p,\alpha )\le \Bigg \{ \mathcal {O}(\mu ^{\nu -p-1}\beta ^{-1}) +\,\dfrac{1}{p}\beta ^{p-1} A - \dfrac{1}{p^2} \beta ^{p-2}M_\mathrm {max}A+\mathcal {O}(\mu ^\nu \beta ^{p-2})\\&\qquad +\mathcal {O}(\mu ^{\nu -1}\beta ^{p-3}) - \beta ^{p-1} A\Bigg \}\\&\qquad \times \Big \{ \dfrac{1}{p\beta } A - \dfrac{M_\mathrm {max}}{p^2\beta ^2} A + \mathcal {O}(\mu ^\nu \beta ^{-2})+\mathcal {O}(\mu ^{\nu -1}\beta ^{-3}) \Big \}^{-1}\\&\quad =\Big \{ \dfrac{1-p}{p} \beta ^{p-1} A - \dfrac{1}{p^2} M_\mathrm {max}\beta ^{p-2} A + \mathcal {O}(\mu ^{\nu -p-1}\beta ^{-1}+\mu ^\nu \beta ^{p-2}+\mu ^{\nu -1}\beta ^{p-3}) \Big \}\\&\qquad \times \Big \{ \dfrac{A}{p\beta } \Big (1 - \dfrac{M_\mathrm {max}}{p\beta }+ \mathcal {O}(\mu \beta ^{-1}+\beta ^{-2}) \Big ) \Big \}^{-1}\\&\quad =\Big ( (1-p)\beta ^p - \dfrac{1}{p} M _\mathrm {max}\beta ^{p-1}+ \mathcal {O}\big (\mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2}\big ) \Big )\\&\qquad \times \Big (1 + \dfrac{M_\mathrm {max}}{p\beta }+ \mathcal {O}(\mu \beta ^{-1}+\beta ^{-2}) \Big )\\&\quad =(1-p)\beta ^p - M_\mathrm {max}\beta ^{p-1} +\mathcal {O}\big ( \mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2}\big ). \end{aligned}$$

The remainder is optimized by \(\mu =\beta ^{-\frac{p-1}{p+1}}\), and we arrive

$$\begin{aligned} \Lambda ^+(p,\alpha )&\le (1-p)\beta ^p - M_\mathrm {max}\beta ^{p-1} + \mathcal {O}(\beta ^{p-1 - \frac{p-1}{p+1}})\\&= (1-p)\alpha ^\frac{p}{p-1} - M_\mathrm {max}\alpha + \mathcal {O}\big (\alpha ^{1- \frac{1}{p+1}}\big ). \end{aligned}$$

If, in addition, \(\Omega \) is \(C^4\) smooth, then M is \(C^2\) smooth, and for some \(m\ge 0\) we have \(-M_\mathrm {max}\le -M(s)\le -M_\mathrm {max}+ m d(s,s_0)^2\) as s is sufficiently close to \(s_0\), which allows one to replace the second estimate in (51) by

$$\begin{aligned} \int _S \big (-M(s)\big ) \big |v(s)\big |^p \mathrm {d}\sigma (s)= -M_\mathrm {max}A + \mathcal {O}(\mu ^{\nu +1}), \end{aligned}$$
(52)

and a similar computation gives

$$\begin{aligned} \Lambda ^+(p,\alpha )\le (1-p)\beta ^p - M_\mathrm {max}\beta ^{p-1} +\mathcal {O}\big ( \mu ^{-p}+\mu ^2 \beta ^{p-1}+\beta ^{p-2}\big ). \end{aligned}$$

Hence, taking \(\mu =\beta ^{-\frac{p-1}{p+2}}\) we arrive at

$$\begin{aligned} \Lambda ^+(p,\alpha )&\le (1-p)\beta ^p - M_\mathrm {max}\beta ^{p-1} + \mathcal {O}(\beta ^{p-1 - \frac{2(p-1)}{p+2}})\\&= (1-p)\alpha ^\frac{p}{p-1} - M_\mathrm {max}\alpha + \mathcal {O}\big (\alpha ^{1- \frac{2}{p+2}}\big ). \end{aligned}$$

For the case \(p\in (2,+\infty )\), the substitution of (51) into (23) gives

$$\begin{aligned} \Lambda ^+(p,\alpha )&\le \Big \{ \dfrac{1-p}{p} \beta ^{p-1} A - \dfrac{M_\mathrm {max}}{p^2} \beta ^{p-2} A + \mathcal {O}\big ( \varepsilon _0^\frac{2-p}{2}\mu ^{\nu -p-1}\beta ^{-1} + \mu ^\nu \beta ^{p-2}\\&\quad {}+ \mu ^{\nu -1}\beta ^{p-3} +\varepsilon _0 \mu ^{\nu -1}\beta ^{p-1} \big )\Big \} \times \Big \{ \dfrac{A}{p\beta } \Big (1 - \dfrac{M_\mathrm {max}}{p\beta }+ \mathcal {O}(\mu \beta ^{-1}+\beta ^{-2}) \Big ) \Big \}^{-1}\\&=\Big ( (1-p)\beta ^p - \dfrac{1}{p} M _\mathrm {max}\beta ^{p-1}+ \mathcal {O}\big (\varepsilon _0^\frac{2-p}{2}\mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2} +\varepsilon _0 \beta ^p\big ) \Big )\\&\quad \times \Big (1 + \dfrac{M_\mathrm {max}}{p\beta }+ \mathcal {O}(\mu \beta ^{-1}+\beta ^{-2}) \Big )\\&=(1-p)\beta ^p - M _\mathrm {max}\beta ^{p-1}+ \mathcal {O}\big (\varepsilon _0^\frac{2-p}{2}\mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2} +\varepsilon _0 \beta ^p\big ). \end{aligned}$$

In order to optimize we solve \(\varepsilon _0^\frac{2-p}{2}\mu ^{-p}=\mu \beta ^{p-1}=\varepsilon _0 \beta ^p\), which gives

$$\begin{aligned} \mu =\beta ^{-1/3}, \quad \varepsilon _0=\beta ^{-4/3}, \quad \mathcal {O}\big (\varepsilon _0^\frac{2-p}{2}\mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2} +\varepsilon _0 \beta ^p\big )=\mathcal {O}(\beta ^{p-\frac{4}{3}}), \end{aligned}$$

and, therefore,

$$\begin{aligned} \Lambda ^+(p,\alpha )\le & {} (1-p)\beta ^p - M_\mathrm {max}\beta ^{p-1} + \mathcal {O}(\beta ^{p-\frac{4}{3}}) = (1-p)\alpha ^\frac{p}{p-1}\\&- M_\mathrm {max}\alpha + \mathcal {O}\big (\alpha ^{1- \frac{1}{3(p-1)}}\big ). \end{aligned}$$

For \(C^4\) domains, a similar computation using (52) gives

$$\begin{aligned} \Lambda ^+(p,\alpha )\le (1-p)\beta ^p - M _\mathrm {max}\beta ^{p-1}+ \mathcal {O}\big (\varepsilon _0^\frac{2-p}{2}\mu ^{-p}+\mu ^2 \beta ^{p-1}+\beta ^{p-2} +\varepsilon _0 \beta ^p\big ). \end{aligned}$$

The remainder is optimized by

$$\begin{aligned} \mu =\beta ^{-1/4}, \quad \varepsilon _0=\beta ^{-3/2}, \quad \mathcal {O}\big (\varepsilon _0^\frac{2-p}{2}\mu ^{-p}+\mu \beta ^{p-1}+\beta ^{p-2} +\varepsilon _0 \beta ^p\big )=\mathcal {O}(\beta ^{p-\frac{3}{2}}), \end{aligned}$$

which gives the sought result. We remark that for \(p=2\) in (49) we obtain \(\kappa =1/2\), which is optimal, see [23, 32]. \(\square \)

Finally, an easy revision of the proof of Theorem 6.6 gives the following result:

Corollary 6.11

Under the assumptions of Proposition 6.10, the right-hand-side of (45) can be improved to \(\mathcal {O}(\alpha ^{-\kappa })\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovařík, H., Pankrashkin, K. On the p-Laplacian with Robin boundary conditions and boundary trace theorems. Calc. Var. 56, 49 (2017). https://doi.org/10.1007/s00526-017-1138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1138-4

Mathematics Subject Classification

Navigation