Skip to main content
Log in

Two Whyburn type topological theorems and its applications to Monge–Ampère equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we correct a gap of Whyburn type topological lemma and establish two superior limit theorems. As the applications of our Whyburn type topological theorems, we study the following Monge–Ampère equation

$$\begin{aligned} \left\{ \begin{array}{lll} \det \left( D^2u\right) =\lambda ^N a(x)f(-u)\,\, &{}\quad \text {in}\,\, \Omega ,\\ u=0~~~~~~~\,\,&{}\quad \text {on}\,\, \partial \Omega . \end{array} \right. \end{aligned}$$

We establish global bifurcation results for the problem. We find intervals of \(\lambda \) for the existence, multiplicity and nonexistence of strictly convex solutions for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Admas, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Ambrosetti, A., Calahorrano, R.M., Dobarro, F.R.: Global branching for discontinuous problems. Comment Math. Univ. Carolin. 31, 213–222 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Amick, C.J., Turner, R.E.L.: A global branch of steady vortex rings. J. Rein. Angew. Math. 384, 1–23 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Arcoya, D., Diaz, J.I., Tello, L.: \(S\)-shaped bifurcation branch in a quasilinear multivalued model arising in climatoloty. J. Differ. Equ. 150, 215–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H: Operateurs Maximaux Monotone et Semigroup de Contractions dans les Espase de Hilbert. Math. Stud. vol. 5, North-Holland, Amsterdam (1973)

  6. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. Part I. Monge–Ampère equation. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, S.Y., Yau, S.T.: On the regularity of the solution of the \(n\)-dimensional Minkowski problem. Commun. Pure Appl. Math. 29, 495–516 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, S.Y., Yao, S.T.: On the regularity of the Monge–Ampère equation \(\det \left(\partial ^2 u/\partial x_i\partial x_j\right) =F(x, u)\). Commun. Pure Appl. Math. 30, 41–68 (1977)

    Article  Google Scholar 

  9. Cheng, S.Y., Yao, S.T.: The real Monge–Ampère equations and affine fiat structures. In: Cheng, S.S., Wu, W.T. (eds.) Proceeding of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, Gordon and Breach, New-York (1982)

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  11. Dai, G.: Global branching for discontinuous problems involving the \(p\)-Laplacian. E. J. Differ. Equ. 44, 1–10 (2013)

    Google Scholar 

  12. Dai, G.: Eigenvalue, global bifurcation and positive solutions for a class of nonlocal elliptic equations. Topol. Methods Nonlinear Anal. (Inpress)

  13. Dai, G., Ma, R., Lu, Y.: Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition. J. Math. Anal. Appl. 397, 119–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, G., Ma, R., Wang, H.: Eigenvalues, bifurcation and one-sign solutions for the periodic \(p\)-Laplacian. Commun. Pure Appl. Anal. 12(6), 2839–2872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delano, P.: Radially symmetric boundary value problems for real and complex elliptic Monge–Ampère equations. J. Differ. Equ. 58, 318–344 (1985)

    Article  Google Scholar 

  16. Del Pino, M., Elgueta, M., Manásevich, R.: A homotopic deformation along \(p\) of a Leray–Schauder degree result and existence for \(\left(\vert u^{\prime }\vert ^{p-2}u^{\prime }\right)^{\prime }+f(t, u)=0\), \(u(0)=u(T)=0\), \(p>1\). J. Differ. Equ. 80, 1–13 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1987)

    MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. AMS, Rhode Island (1998)

    MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  20. Guan, P.: \(C^2\) a priori estimates for degenerate Monge–Ampère equations. Duke Math. J. 86, 323–346 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guan, P.: Topics in Geometric Fully Nonlinear Equations. Unpublished notes (2002)

  22. Guan, B., Guan, P.: Convex hypersurfaces of prescribed curvatures. Ann. Math. 156, 655–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guan, P., Li, Y.Y.: The Weyl problem with nonnegative Gauss curvature. J. Differ. Geom. 39, 331–342 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Guan, P., Lin, C.S.: On the equation \(det\left(u_{ij} +\delta _{ij}u\right) = u^p f(x)\) on \(S^n\), preprint, NCTS in Tsing-Hua University (2000)

  25. Guan, P., Sawyer, E.: Regularity of subelliptic Monge–Ampère equations in the plane. Trans. Am. Math. Soc. 361, 4581–4591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guan, P., Trudinger, N.S., Wang, X.J.: On the Dirichlet problem for degenerate Monge–Ampère equations. Acta Math. 182, 87–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, S., Wang, H.: Convex solutions of BVP arising from Monge–Ampère equations. Discr. Contin. Dyn. Syst. 16, 705–720 (2006)

    Article  MATH  Google Scholar 

  28. Idogawa, T., Ôtani, M.: The first eigenvalues of some abstact elliptic operator. Funkcialaj Ekvacioj 38, 1–9 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Im, B., Lee, E., Lee, Y.H.: A global bifurcation phenomena for second order singular boundary value problems. J. Math. Anal. Appl. 308, 61–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jankowski, T.: Positive solutions to Sturm–Liouville problems with non-local boundary conditions. Proc. R. Soc. Edinburgh Sect. A 144, 119–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krylov, N.V.: On degenerate nonlinear elliptic equations. Mat. Sbornik 120, 311–330 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Kutev, N.D.: Nontrivial solutions for the equations of Monge–Ampère type. J. Math. Anal. Appl. 132, 424–433 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H., Sun, J.: Positive solutions of sublinear Sturm–Liouville problems with changing sign nonlinearity. Comput. Math. Appl. 58, 1808–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, P.L.: Sur les équations de Monge–Ampère, I. Manuscr. Math. 41, 1–43 (1983); II, Arch. Ration. Mech. Anal. Announc. C. R. Acad. Sci. Paris. 293, 589–592 (1981)

  35. Lions, P.L.: Two remarks on Monge–Ampère equations. Ann. Mat. Pure Appl. (4) 142, 263–275 (1985)

    Article  MATH  Google Scholar 

  36. López-Gómez, J.: Spectral Theory and Nonlinear Functional Analysis. Chapman and Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  37. Ma, R., An, Y.: Global structure of positive solutions for nonlocal boundary value problems involving integral conditions. Nonlinear Anal. 71, 4364–4376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma, R., Gao, C., Xu, J.: Existence of positive solutions for first order discrete periodic boundary value problems with delay. Nonlinear Anal. 74(12), 4186–4191 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Minkowski, H.: Allgemeine Lehrsätze über die konvexen Polyeder, pp. 198–219. Nachr.Ges. Wiss. Gottingen (1897)

  40. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Transl. Math. Monographs, 35 AMS, Providence, RI (1973)

  42. Pogorelov, A.V.: Regularity of a convex surface with given Gaussian curvature. Mat. Sb. 31, 88–103 (1952)

    MathSciNet  Google Scholar 

  43. Pogorelov, A.V.: On the regularity of generalized solutions of the equation \(\det \left(\partial ^2 u/\partial x_i\partial x_j\right) =\phi \left(x_1,\ldots, x_n\right)>0\). Soviet Math. Dokl. 12, 1436–1440 (1971)

    MathSciNet  Google Scholar 

  44. Pogorelov, A.V.: The Diriehlet problem for the \(n\)-dimensional analogue of the Monge–Ampère equation. Soviet. Math. Dokl. 12, 1727–1731 (1971)

    MathSciNet  MATH  Google Scholar 

  45. Pogorelov, A.V.: The Minkowski Multidimensional Problem. Wiley, New York (1978)

    MATH  Google Scholar 

  46. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shi, J.: Blow up points of solution curves for a semilinear problem. Topol. Methods. Nonlinear. Anal. 15, 251–266 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Tso, K.: On a real Monge–Ampère functional. Invent. Math. 101, 425–448 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  49. Whyburn, G.T.: Topological Analysis. Princeton University Press, Princeton (1958)

    MATH  Google Scholar 

  50. Wang, H.: Convex solutions of boundary value problems. J. Math. Anal. Appl. 318, 246–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, X., O’Regan, D., Chen, Y.: Structure of positive solution sets of semi-positone singular boundary value problems. Nonlinear Anal. 72, 3535–3550 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, X., Sun, J., O’Regan, D.: Global structure of positive solution sets of nonlinear operator equations. Mon. Math. 165, 271–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, Z., Wang, K.: Existence and non-existence of solutions for a class of Monge–Ampère equations. J. Differ. Equ. 246, 2849–2875 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to an anonymous referee for his or her very valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Dai.

Additional information

Communicated by L. Caffarelli.

Research supported by NNSF of China (Nos. 11261052, 11401477), the Fundamental Research Funds for the Central Universities (No. DUT15RC(3)018) and Research project of science and technology of Liaoning Provincial Education Department (No. ZX20150135).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G. Two Whyburn type topological theorems and its applications to Monge–Ampère equations. Calc. Var. 55, 97 (2016). https://doi.org/10.1007/s00526-016-1029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1029-0

Mathematics Subject Classification

Navigation