Skip to main content
Log in

Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study existence and non-existence of constant scalar curvature metrics conformal and arbitrarily close to homogeneous metrics on spheres, using variational techniques. This describes all critical points of the Hilbert–Einstein functional on such conformal classes, near homogeneous metrics. Both bifurcation and local rigidity type phenomena are obtained for 1-parameter families of U(n + 1), Sp(n + 1) and Spin(9)-homogeneous metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosetti A., Malchiodi A.: A multiplicity result for the Yamabe problem on S n. J. Funct. Anal. 168(2), 529–561 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson M.T.: On uniqueness and differentiability in the space of Yamabe metrics. Commun. Contemp. Math. 7(3), 299–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin T.: Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Bérard Bergery L., Bourguignon J.-P.: Laplacians and Riemannian submersions with totally geodesic fibres. Illinois J. Math. 26, 2 (1982)

    Google Scholar 

  5. Berger, M., Gauduchon, P., Mazet, E.: Le spectre dúne vari ét é riemannienne, Vol. 194. Lecture Notes in Mathematics, Springer, Berlin (1971)

  6. Berti M., Malchiodi A.: Non-compactness and multiplicity results for the Yamabe problem on S n. J. Funct. Anal. 180(1), 210–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Besse, A.: Einstein manifolds, Reprint of the 1987 edition. In: Classics in Mathematics. Springer, Berlin (2008)

  8. Besson G., Bordoni M.: On the spectrum of Riemannian submersions with totally geodesic fibers. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Mat. Appl. 9, 1, 335–340 (1990)

    MathSciNet  Google Scholar 

  9. Brendle S., Marques F.C.: Blow-up phenomena for the Yamabe equation II. J. Diff. Geom. 81(2), 225–250 (2009)

    MathSciNet  MATH  Google Scholar 

  10. de Lima, L.L., Piccione, P., Zedda, M.: On bifurcation of solutions of the Yamabe problem in product manifolds. Preprint arXiv:1102.2321v1, to appear in Ann. Inst. H. Poincaré

  11. de Lima, L.L., Piccione, P., Zedda M.: A note on the uniqueness of solutions for the Yamabe problem. Preprint arXiv:1012.1497v1, to appear in Proc. AMS

  12. Kielhöfer, H.: Bifurcation theory. In An Introduction with Applications to PDEs. Applied Mathematical Sciences, Vol. 156. Springer, Berlin (2004)

  13. Khuri M.A., Marques F.C., Schoen R.M.: A compactness theorem for the Yamabe problem. J. Diff. Geom. 81(1), 143–196 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Li Y.Y., Zhang L.: Compactness of solutions to the Yamabe problem. II. Calc. Var. Partial Diff. Equ. 24(2), 185–237 (2005)

    Article  MATH  Google Scholar 

  15. Li Y.Y., Zhang L.: Compactness of solutions to the Yamabe problem III. J. Funct. Anal. 245, 438–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marques F.C.: A priori estimates for the Yamabe problem in the non-locally conformally flat case. J. Diff. Geom. 71(2), 315–346 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Nelson E.: Analytic vectors. Ann. Math. 70(2), 572–615 (1959)

    Article  MATH  Google Scholar 

  18. Obata M.: The conjectures on conformal transformations of Riemannian manifolds. J. Diff. Geom. 6, 247–258 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Pollack D.: Nonuniqueness and high energy solutions for a conformally invariant scalar equation. Comm. Anal. Geom. 1(3-4), 347–414 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  21. Schmüdgen K.: Strongly commuting self-adjoint operators and commutants of unbounded operator algebras. Proc. Amer. Math. Soc. 102(2), 365–372 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Schoen R.: On the number of constant scalar curvature metrics in a conformal class, Differential geometry, Pitman Monogr., Surveys Pure Appl. Math., vol. 52, pp. 311–320. Longman Sci. Tech., Harlow (1991)

  24. Schoen R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. Topics in Calculus of Variations, Lecture Notes in Mathematics. 1365, 120–154 (1989)

    Article  MathSciNet  Google Scholar 

  25. Shioya T.: Convergence of Alexandrov spaces and spectrum of Laplacian. J. Math. Soc. Jpn 53(1), 1–15 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smoller J., Wasserman A.G.: Bifurcation and symmetry-breaking. Invent. Math. 100, 63–95 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tanno S.: The first eigenvalue of the Laplacian on spheres. Tohoku Math. J. 31(2), 179–185 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tanno S.: Some metrics on a (4r + 3)-sphere and spectra. Tsukuba J. Math. 4(1), 99–105 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Trudinger N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Annali Scuola Norm. Sup. Pisa 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  30. Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Ziller W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259, 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato G. Bettiol.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettiol, R.G., Piccione, P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc. Var. 47, 789–807 (2013). https://doi.org/10.1007/s00526-012-0535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0535-y

Mathematics Subject Classification (1991)

Navigation