Skip to main content
Log in

Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic Patlak–Keller–Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial mass of the system. Actually, there is a sharp critical mass M c such that if \({M \in (0, M_c]}\) solutions exist globally in time, whereas there are blowing-up solutions otherwise. We also show the existence of self-similar solutions for \({M \in (0, M_c)}\) . While characterising the possible infinite time blowing-up profile for M  =  M c , we observe that the long time asymptotics are much more complicated than in the classical Patlak–Keller–Segel system in dimension two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.A., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser (2005)

  2. Bertozzi A.L., Pugh M.C.: Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math. 51, 625–661 (1998)

    Google Scholar 

  3. Bertozzi A.L., Pugh M.C.: Finite-time blow-up of solutions of some long-wave unstable thin film equations. Indiana Univ. Math. J. 49, 1323–1366 (2000)

    MATH  Google Scholar 

  4. Biler, P., Karch, G., Laurençot, P., Nadzieja, T.: The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563–1583 (2006)

    MATH  Google Scholar 

  5. Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008)

    Google Scholar 

  6. Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical two-dimensional Patlak–Keller–Segel model. Comm. Pure Appl. Math. 61, 1449–1481 (2008)

    MATH  Google Scholar 

  7. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44 (2006), 32 pp (electronic)

    Google Scholar 

  8. Calvez V., Carrillo J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86, 155–175 (2006)

    MATH  Google Scholar 

  9. Carlen E., Loss M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n. Geom. Funct. Anal. 2, 90–104 (1992)

    MATH  Google Scholar 

  10. Carrillo J.A., Jüngel A., Markowich P.A., Toscani G., Unterreiter A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

    MATH  Google Scholar 

  11. Carrillo J.A., McCann R.J., Villani C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19, 1–48 (2003)

    Google Scholar 

  12. Carrillo J.A., McCann R.J., Villani C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    MATH  Google Scholar 

  13. Carrillo J.A., Toscani G.: Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–142 (2000)

    MATH  Google Scholar 

  14. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  15. Chavanis P.-H., Sire C.: Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Phys. Rev. E. 69, 016116 (2004)

    Google Scholar 

  16. Corrias L., Perthame B., Zaag H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

    MATH  Google Scholar 

  17. Dolbeault, J., Perthame, B.: Optimal critical mass in the two-dimensional Keller–Segel model in \({\mathbb {R}^2}\)C. R. Math. Acad. Sci. Paris 339, 611–616 (2004)

    MATH  Google Scholar 

  18. Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 224, 2nd edn. Springer, Berlin (1983)

  20. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math. Verein. 105, 103–165 (2003)

    MATH  Google Scholar 

  21. Jäger,W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    MATH  Google Scholar 

  22. Keller E.F., Segel L.A.: Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Google Scholar 

  23. Kowalczyk R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–588 (2005)

    MATH  Google Scholar 

  24. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118, 349–374 (1983)

    Google Scholar 

  25. Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

  26. Lieb E.H., Yau H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112, 147–174 (1987)

    MATH  Google Scholar 

  27. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    MATH  Google Scholar 

  28. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    MATH  Google Scholar 

  29. Merle F., Raphaël P.: On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156, 565–672 (2004)

    MATH  Google Scholar 

  30. Ogawa, T.: Decay and asymptotic behavior of solutions of the Keller–Segel system of degenerate and nondegenerate type, Self-similar solutions of nonlinear PDE, pp. 161–184, Banach Center Publ., 74, Polish Acad. Sci., Warsaw (2006)

  31. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26, 101–174 (2001)

    MATH  Google Scholar 

  32. Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Google Scholar 

  33. Slepčev D., Pugh M.C.: Selfsimilar blowup of unstable thin-film equations. Indiana Univ. Math. J. 54, 1697–1738 (2005)

    MATH  Google Scholar 

  34. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19, 841–876 (2006)

    Google Scholar 

  35. Sugiyama, Y.: Application of the best constant of the Sobolev inequality to degenerate Keller–Segel models. Adv. Differ. Equ. 12, 121–144 (2007)

    MATH  Google Scholar 

  36. Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    Google Scholar 

  37. Topaz C.M., Bertozzi A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    MATH  Google Scholar 

  38. Topaz C.M., Bertozzi A.L., Lewis M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)

    Google Scholar 

  39. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87, 567–576 (1983)

    MATH  Google Scholar 

  40. Weinstein, M.I.: On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm. Partial Differ. Equ. 11, 545–565 (1986)

    MATH  Google Scholar 

  41. Zakharov V.E., Shabat A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61, 118–134 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Carrillo.

Additional information

This paper is under the Creative Commons licence Attribution-NonCommercial-ShareAlike 2.5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, A., Carrillo, J.A. & Laurençot, P. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. 35, 133–168 (2009). https://doi.org/10.1007/s00526-008-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0200-7

Mathematics Subject Classification (2000)

Navigation