Skip to main content
Log in

Fuzzy logic model for pullout capacity of near-surface-mounted FRP reinforcement bonded to concrete

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The application of fiber-reinforced polymer (FRP) strips or rods in the form of near-surface-mounted (NSM) reinforcement has become an attractive solution to strengthen the existing buildings and bridges. It is of interest to engineers to have an accurate estimate of the bond capacity of this technique. In this paper, fuzzy logic approach is utilized to propose an alternative method of determining the pullout strength of NSM FRP strips/rods which are bonded to the concrete block. Two types of fuzzy logic models, namely Mamdani and Takagi–Sugeno, are developed. With the aim of enhancing the interpretability of the fuzzy model, the rule base of Mamdani model is extracted from the classification decision tree, and the membership functions corresponding to the linguistic concepts are built by uniform partitioning the range of variables. On the other hand, in order to arrive at closed-form equations for pullout capacity, the subtractive clustering algorithm is employed to deduce the rule base and membership functions of Takagi–Sugeno model (first order), and its consequent part is tuned by the least square optimization using training dataset. Several fuzzy logic models of both types with different numbers of rules are developed and compared in terms of different error measures. To train and validate the fuzzy models, a large database of 384 direct pullout tests on NSM FRP bonded to concrete is assembled from the literature. The results reveal that both of the proposed Mamdani and Takagi–Sugeno models demonstrate good accuracy against the experimental data and outperform the published models. A parametric study indicates that the proposed fuzzy models can predict the maximum effective bond length, and thus, they are able to capture the underlying mechanics of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen JF, Teng JG (2001) Anchorage strength models for FRP and steel plates bonded to concrete. J Struct Eng 127(7):784–791

    Article  Google Scholar 

  2. Kara IF, Ashour AF, Köroğlu MA (2016) Flexural performance of reinforced concrete beams strengthened with prestressed near-surface-mounted FRP reinforcements. Compos Part B Eng 91:371–383

    Article  Google Scholar 

  3. Kalupahana WKKG, Ibell TJ, Darby AP (2013) Bond characteristics of near surface mounted CFRP bars. Constr Build Mater 43:58–68

    Article  Google Scholar 

  4. Sharaky IA, Torres L, Baena M, Vilanova I (2013) Effect of different material and construction details on the bond behaviour of NSM FRP bars in concrete. Constr Build Mater 38:890–902

    Article  Google Scholar 

  5. Bilotta A, Ceroni F, Di Ludovico M, Nigro E, Pecce M, Manfredi G (2011) Bond efficiency of EBR and NSM FRP systems for strengthening concrete members. J Compos Constr 15(5):757–772

    Article  Google Scholar 

  6. Seo SY, Feo L, Hui D (2013) Bond strength of near surface-mounted FRP plate for retrofit of concrete structures. Compos Struct 95:719–727

    Article  Google Scholar 

  7. Seracino R, Raizal Saifulnaz MR, Oehlers DJ (2007) Generic debonding resistance of EB and NSM plate-to-concrete joints. J Compos Constr 11(1):62–70

    Article  Google Scholar 

  8. Zhang SS, Teng JG, Yu T (2013) Bond strength model for CFRP strips near-surface mounted to concrete. J Compos Constr. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000402

    Article  Google Scholar 

  9. Guillaume S (2001) Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans Fuzzy Syst 9(3):426–443

    Article  Google Scholar 

  10. Mikut R, Jäkel J, Gröll L (2005) Interpretability issues in data-based learning of fuzzy systems. Fuzzy Set Syst 150(2):179–197

    Article  MathSciNet  MATH  Google Scholar 

  11. Dilmaç H, Demir F (2013) Stress–strain modeling of high-strength concrete by the adaptive network-based fuzzy inference system (ANFIS) approach. Neural Comput Appl 23(1):385–390

    Article  Google Scholar 

  12. Cevik A, Ozturk S (2009) Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement. Civ Eng Environ Syst 26(3):263–277

    Article  Google Scholar 

  13. Cevik A (2011) Modeling strength enhancement of FRP confined concrete cylinders using soft computing. Expert Syst Appl 38(5):5662–5673

    Article  Google Scholar 

  14. Nasrollahzadeh K, Basiri MM (2014) Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system. Expert Syst Appl 41(4):1006–1020

    Article  Google Scholar 

  15. Nasrollahzadeh K, Nouhi E (2018) Fuzzy inference system to formulate compressive strength and ultimate strain of square concrete columns wrapped with fiber-reinforced polymer. Neural Comput Appl 30(1):69–86

    Article  Google Scholar 

  16. Subaşı S, Beycioğlu A, Sancak E, Şahin İ (2013) Rule-based Mamdani type fuzzy logic model for the prediction of compressive strength of silica fume included concrete using non-destructive test results. Neural Comput Appl 22(6):1133–1139

    Article  Google Scholar 

  17. Doran B, Yetilmezsoy K, Murtazaoglu S (2015) Application of fuzzy logic approach in predicting the lateral confinement coefficient for RC columns wrapped with CFRP. J Eng Struct 88(1):74–91

    Article  Google Scholar 

  18. Hoque N, Jumaat MZ, Shukri AA (2017) Critical curtailment location of EBR FRP bonded RC beams using dimensional analysis and fuzzy logic expert system. Compos Struct 166:87–95

    Article  Google Scholar 

  19. ud Darain KM, Jumaat MZ, Hossain MA, Hosen MA, Obaydullah M, Huda MN, Hossain I (2015) Automated serviceability prediction of NSM strengthened structure using a fuzzy logic expert system. Expert Syst Appl 42(1):376–389

    Article  Google Scholar 

  20. ud Darain KM, Shamshirband S, Jumaat MZ, Obaydullah M (2015) Adaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beams. Constr Build Mater 98:276–285

    Article  Google Scholar 

  21. Sharaky IA, Torres L, Baena M, Miàs C (2013) An experimental study of different factors affecting the bond of NSM FRP bars in concrete. Compos Struct 99:350–365

    Article  Google Scholar 

  22. De Lorenzis L, Rizzo A, La Tegola A (2002) A modified pull-out test for bond of near-surface mounted FRP rods in concrete. Compos Part B Eng 33(8):589–603

    Article  Google Scholar 

  23. De Lorenzis L, Nanni A (2002) Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening. ACI Struct J 99(2):123–132

    Google Scholar 

  24. Lee D, Cheng L, Yan-Gee Hui J (2012) Bond characteristics of various NSM FRP reinforcements in concrete. J Compos Constr 17(1):117–129

    Article  Google Scholar 

  25. Ceroni F, Pecce M, Bilotta A, Nigro E (2012) Bond behavior of FRP NSM systems in concrete elements. Compos Part B Eng 43(2):99–109

    Article  Google Scholar 

  26. Bilotta A, Ceroni F, Nigro E, Pecce M (2014) Strain assessment for the design of NSM FRP systems for the strengthening of RC members. Constr Build Mater 69:143–158

    Article  Google Scholar 

  27. Seracino R, Jones NM, Ali MS, Page MW, Oehlers DJ (2007) Bond strength of near-surface mounted FRP strip-to-concrete joints. J Compos Constr 11(4):401–409

    Article  Google Scholar 

  28. Rashid R, Oehlers DJ, Seracino R (2008) IC debonding of FRP NSM and EB retrofitted concrete: plate and cover interaction tests. J Compos Constr 12(2):160–167

    Article  Google Scholar 

  29. Oehlers DJ, Haskett M, Wu C, Seracino R (2008) Embedding NSM FRP plates for improved IC debonding resistance. J Compos Constr 12(6):635–642

    Article  Google Scholar 

  30. Soliman SM, El-Salakawy E, Benmokrane B (2010) Bond performance of near-surface-mounted FRP bars. J Compos Constr 15(1):103–111

    Article  Google Scholar 

  31. Novidis DG, Pantazopoulou SJ (2008) Bond tests of short NSM-FRP and steel bar anchorages. J Compos Constr 12(3):323–333

    Article  Google Scholar 

  32. Shield C, French C, Milde E (2005) The effect of adhesive type on the bond of NSM tape to concrete. In: ACI SP230: 7th international symposium on fiber-reinforced polymer (FRP) reinforcement for concrete structures

  33. Lee D, Hui J, Cheng L (2012) Bond characteristics of NSM reinforcement in concrete due to adhesive type and surface configuration. In: 6th International conference on FRP composites in civil engineering (CICE2012). Rome, Italy

  34. Palmieri A, Matthys S, Taerwe L (2012) Double bond shear tests on NSM FRP strengthened members. In: 6th international conference on FRP composites in civil engineering (CICE2012)

  35. Novidis D, Pantazopoulou SJ, Tentolouris E (2007) Experimental study of bond of NSM-FRP reinforcement. Constr Build Mater 21(8):1760–1770

    Article  Google Scholar 

  36. Palmieri A, Matthys S, Barros JA, Costa I, Bilotta A, Nigro E, Ceroni F, Szambo Z, Balazs G (2012) Bond of NSM FRP strengthened concrete: round robin test initiative. In: 6th international conference on FRP composites in civil engineering (CICE2012)

  37. De Lorenzis L, Lundgren K, Rizzo A (2004) Anchorage length of near-surface mounted fiber-reinforced polymer bars for concrete strengthening-experimental investigation and numerical modeling. ACI Struct J 101(2):269–278

    Google Scholar 

  38. El-Gamal S, Al-Salloum Y, Alsayed S, Aqel M (2012) Performance of near surface mounted glass fiber reinforced polymer bars in concrete. J Reinf Plast Compos 31(22):1501–1515

    Article  Google Scholar 

  39. Peng H, Hao H, Zhang J, Liu Y, Cai CS (2015) Experimental investigation of the bond behavior of the interface between near-surface-mounted CFRP strips and concrete. Constr Build Mater 96:11–19

    Article  Google Scholar 

  40. Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    Article  MATH  Google Scholar 

  41. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1:116–132

    Article  MATH  Google Scholar 

  42. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  43. Yuan Y, Shaw MJ (1995) Induction of fuzzy decision trees. Fuzzy Set Syst 69(2):125–139

    Article  MathSciNet  Google Scholar 

  44. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  45. Brieman L, Friedman JH, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont

    Google Scholar 

  46. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Nasrollahzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: List of fuzzy rules in the proposed Mamdani model for the pullout capacity of NSM FRP

IF

THEN

1. L = [VL] ⋀ fc′ = [VL]

Pf = [VL]

2. L = [VL] ⋀ fc′ ≠ [VL]

Pf = [L]

3. L ≠ [VL] ⋀ AfEf = [VL] ⋀ Dg/Wg ≠ [H] ⋀ Pnorm/Anorm = [VL]

Pf = [AL]

4. L ≠ [VL] ⋀ AfEf = [VL] ⋀ Dg/Wg ≠ [H] ⋀ Pnorm/Anorm = [L]

Pf = [L]

5. L ≠ [VL] ⋀ AfEf = [VL] ⋀ Dg/Wg ≠ [H] ⋀ Pnorm/Anorm = [M]

Pf = [AH]

6. L ≠ [VL] ⋀ AfEf = [VL] ⋀ Dg/Wg ≠ [H] ⋀ Pnorm/Anorm = ([H]  ν  [VH])

Pf = [L]

7. L ≠ [VL] ⋀ AfEf = [VL] ⋀ Dg/Wg = [H]

Pf = [AH]

8. L ≠ [VL] ⋀ AfEf = ([L]   ν  [M] ν  [H]) ⋀ fc′ = ([VL] ν  [L]) ⋀ fe = [VL]

Pf = [AL]

9. L ≠ [VL] ⋀ AfEf = [VH] ⋀ fc′ = ([VL] ν  [L]) ⋀ fe = [VL]

Pf = [L]

10. L ≠ [VL] ⋀ AfEf ≠ [VL] ⋀ fc′ = [VL] ⋀ fe ≠ [VL]

Pf = [AL]

11. L ≠ [VL] ⋀ AfEf = ([L] ν   [M] ν   [H]) ⋀ fc′ = [L] ⋀ fe ≠ [VL]

Pf = [AL]

12. L ≠ [VL] ⋀ AfEf = [VH] ⋀ fc′ = [L] ⋀ fe ≠ [VL]

Pf = [AH]

13. L = ([L] ν   [M]) ⋀ AfEf ≠ [VL] ⋀ fc′ = ([M] ν  [H] ν  [VH]) ⋀ fe = ([VL]  ν   [L]) ⋀ Pnorm/Anorm = [VL]

Pf = [H]

14. L = ([L]  ν   [M]) ⋀ AfEf ≠ [VL] ⋀ fc′ = ([M]  ν   [H]  ν   [VH]) ⋀ fe = ([M]  ν   [H]  ν   [VH]) ⋀ Pnorm/Anorm = [VL]

Pf = [AL]

15. L = ([L] ν   [M]) ⋀ AfEf ≠ [VL] ⋀ fc′ = ([M] ν  [H]  ν   [VH]) ⋀ Pnorm/Anorm ≠ [VL]

Pf = [AL]

16. L = ([H]  ν   [VH]) ⋀ AfEf ≠ [VL] ⋀ fc′ = [M]

Pf = [VH]

17. L = ([H]  ν   [VH]) ⋀ AfEf ≠ [VL] ⋀ fc′ = ([H]  ν   [VH])

Pf = [H]

  1. [L], [M], [H], [VL], [VH], [AL], and [AH] stand for low, medium, high, very low, very high, almost low, and almost high, respectively (see Fig. 4)

Appendix 2: Closed-form relations for the proposed Sugeno model (with three rules) for the pullout capacity of NSM FRP

$$\begin{aligned} w_{1} & = \exp \left\{ {\frac{ - 4}{{0.9935^{2} }}\left[ {\left( {\frac{L - 250}{508 - 30}} \right)^{2} + \left( {\frac{{A_{f} E_{f} - 5740.3}}{16966 - 1300}} \right)^{2} + \left( {\frac{{f_{\text{c}}^{{\prime }} - 28.5}}{64.8 - 15}} \right)^{2} } \right.} \right. \\ & \quad \left. {\left. { + \left( {\frac{{f_{\text{e}} - 35.2}}{90.7 - 6}} \right)^{2} + \left( {\frac{{\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} - 1.5557}}{5.45 - 0.9}} \right)^{2} + \left( {\frac{{\frac{{D_{\text{g}} }}{{W_{\text{g}} }} - 1}}{6.89 - 1}} \right)^{2} } \right]} \right\} \\ \end{aligned}$$
$$\begin{aligned} w_{2} & = \exp \left\{ {\frac{ - 4}{{0.9935^{2} }}} \right.\left[ {\left( {\frac{L - 200}{508 - 30}} \right)^{2} + \left( {\frac{{A_{f} E_{f} - 2114.5}}{16966 - 1300}} \right)^{2} + \left( {\frac{{f_{\text{c}}^{{\prime }} - 41.8}}{64.8 - 15}} \right)^{2} } \right. \\ & \quad \left. {\left. { + \left( {\frac{{f_{\text{e}} - 16}}{90.7 - 6}} \right)^{2} + \left( {\frac{{\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} - 5.1607}}{5.45 - 0.9}} \right)^{2} + \left( {\frac{{\frac{{D_{\text{g}} }}{{W_{\text{g}} }} - 3.7584}}{6.89 - 1}} \right)^{2} } \right]} \right\} \\ \end{aligned}$$
$$\begin{aligned} w_{3} & = \exp \left\{ {\frac{ - 4}{{0.9935^{2} }}} \right.\left[ {\left( {\frac{L - 36}{508 - 30}} \right)^{2} + \left( {\frac{{A_{f} E_{f} - 14017}}{16966 - 1300}} \right)^{2} + \left( {\frac{{f_{\text{c}}^{\prime } - 30.8}}{64.8 - 15}} \right)^{2} } \right. \\ & \quad \left. {\left. { + \left( {\frac{{f_{\text{e}} - 30}}{90.7 - 6}} \right)^{2} + \left( {\frac{{\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} - 0.9723}}{5.45 - 0.9}} \right)^{2} + \left( {\frac{{\frac{{D_{\text{g}} }}{{W_{\text{g}} }} - 1}}{6.89 - 1}} \right)^{2} } \right]} \right\} \\ \end{aligned}$$
$$\begin{aligned} P_{f1} & = - 0.0188L + 0.0030A_{f} E_{f} + 0.6019f_{\text{c}}^{'} - 0.3151f_{\text{e}} \\ & \quad - 15.9532\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} + 19.1137\frac{{D_{\text{g}} }}{{W_{\text{g}} }} + 42.5840 \\ \end{aligned}$$
$$\begin{aligned} P_{f2} & = 0.0757L + 0.0209A_{f} E_{f} + 0.3489f_{\text{c}}^{'} - 0.1097f_{\text{e}} \\ & \quad + 17.2851\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} + 0.9352\frac{{D_{\text{g}} }}{{W_{\text{g}} }} - 139.2611 \\ \end{aligned}$$
$$\begin{aligned} P_{f3} & = 0.1041L + 0.0030A_{f} E_{f} + 0.1635f_{\text{c}}^{\prime } + 0.1917f_{\text{e}} \\ & \quad - 5.6615\frac{{P_{\text{norm}} }}{{A_{\text{norm}} }} + 2.6405\frac{{D_{\text{g}} }}{{W_{\text{g}} }} - 53.1304 \\ \end{aligned}$$
$$P_{f} = \frac{{w_{1} P_{f1} + w_{2} P_{f2} + w_{3} P_{f3} }}{{w_{1} + w_{2} + w_{3} }}$$

Example

An experimental data point with L = 200 mm, AfEf = 2053 kN, fc′ = 52.8 MPa, fe = 16 MPa, Pnorm/Anorm = 5.28, and Dg/Wg = 3.77 is considered. The details of calculations are as follows: Pf1 = 59.5475 kN, Pf2 = 30.2443 kN, Pf3 = − 34.3894 kN, w1 = 0.0064, w2 = 0.8182, and w3 = 0.0003. Thereby, the proposed Sugeno fuzzy model yields Pf = 30.54 kN, which agrees with the experimental value of 30.45 kN (see Fig. 7).

Appendix 3: The detailed information on experimental data

This appendix includes a table listing the geometrical/mechanical properties of FRP bars/strips, groove, epoxy, and concrete as well as other testing conditions such as the experimental pullout capacity and bonded length. The table is as follows:

References

No.

L (mm)

FRP bar or strip

Groove

fe (MPa)

fc′ (MPa)

Pf (kN)

Ef (GPa)

fu (MPa)

Db (mm)

tf (mm)

wf (mm)

Dg (mm)

Wg (mm)

[6]

N150-1

150

160

2800

3.6

16

20

7.1

28

24

88.26

N200-1

200

160

2800

3.6

16

20

7.1

28

24

90.21

N150-1-1S

150

160

2800

3.6

16

20

7.1

28

24

90.22

N150-1-2S

150

160

2800

3.6

16

20

7.1

28

24

90.22

[21]

L1612AC1-1

192

170

2350

8

16

12

18.85

23.5

36.8

L1612AC1-2

192

170

2350

8

16

12

18.85

23.5

36.65

L1616AC1-1

192

170

2350

8

16

16

18.85

23.5

40.12

L1616AC1-2

192

170

2350

8

16

16

18.85

23.5

39.82

L1515AC2-1

192

134

2010

9

15

15

18.85

23.5

44.91

L1515AC2-2

192

134

2010

9

15

15

18.85

23.5

44.65

L1616BC1-1

192

170

2350

8

16

16

22.95

23.5

48.99

L1616BC1-2

192

170

2350

8

16

16

22.95

23.5

47.31

T1616BC1-1

240

170

2350

8

16

16

22.95

23.5

54.79

T1616BC1-2

240

170

2350

8

16

16

22.95

23.5

58.09

L1612AG1-1

192

64

1350

8

16

12

18.85

23.5

31.43

L1612AG1-2

192

64

1350

8

16

12

18.85

23.5

35.63

L1616AG1-1

192

64

1350

8

16

16

18.85

23.5

36.23

L1616AG1-2

192

64

1350

8

16

16

18.85

23.5

38.92

L1916AG1U-1

192

64

1350

8

16

16

18.85

23.5

35.8

L1916AG1U-2

192

64

1350

8

16

16

18.85

23.5

36.33

L1616AG1I-1

192

64

1350

8

19

16

18.85

23.5

35.28

L1616AG1I-2

192

64

1350

8

16

16

18.85

23.5

33.33

L1818AG2-1

192

64

1350

12

16

16

18.85

23.5

59.97

L1818AG2-2

192

64

1350

12

18

18

18.85

23.5

57.53

L1616BG1-1

192

64

1350

8

18

18

22.95

23.5

56.67

L1616BG1-2

192

64

1350

8

16

16

22.95

23.5

44.56

L1616BG1-3

192

64

1350

8

16

16

22.95

23.5

48.06

L1616CG1-1

192

64

1350

8

16

16

22.34

23.5

56.34

L1616CG1-2

192

64

1350

8

16

16

22.34

23.5

45.36

L1616CG1-3

192

64

1350

8

16

16

22.34

23.5

52.34

L1616DG1-1

192

64

1350

8

16

16

21

23.5

52.1

L1616DG1-2

192

64

1350

8

16

16

21

23.5

57.79

[22]

SW/k1.25/104

30

174.71

2214

8

16

16

28

22

9.46

SW/k1.50/104

30

174.71

2214

8

10

10

28

22

11.79

SW/k2.00/104

30

174.71

2214

8

12

12

28

22

12.07

SW/k2.50/104

30

174.71

2214

8

16

16

28

22

13.39

SW/k1.25/112

90

174.71

2214

8

20

20

28

22

25.71

SW/k1.50/112

90

174.71

2214

8

10

10

28

22

26.34

SW/k2.00/112

90

174.71

2214

8

12

12

28

22

23.2

SW/k2.50/112

90

174.71

2214

8

16

16

28

22

32.16

SW/k1.25/124

180

174.71

2214

8

20

20

28

22

46.02

SW/k1.50/124

180

174.71

2214

8

10

10

28

22

49.7

SW/k2.00/124

180

174.71

2214

8

12

12

28

22

49.68

SW/k2.50/124

180

174.71

2214

8

16

16

28

22

58.62

CR3/k1.24/104

38

109.27

2014

11.3

20

20

28

22

12.64

CR3/k1.59/104

38

109.27

2014

11.3

14

14

28

22

12.83

CR3/k2.12/104

38

109.27

2014

11.3

18

18

28

22

16.63

GR3/k1.27/104

38

37.17

873

11

24

24

28

22

11.22

GR3/k1.64/104

38

37.17

873

11

14

14

28

22

11.41

GR3/k2.18/104

38

37.17

873

11

18

18

28

22

13.07

[23]

G4D6a

78

41.3

799

13

24

24

13.8

27.6

24.69

G4D12a

156

41.3

799

13

15.87

15.87

13.8

27.6

34.61

G4D12b

156

41.3

799

13

19.05

19.05

13.8

27.6

36.97

G4D12c

156

41.3

799

13

25.4

25.4

13.8

27.6

42.84

G4D18a

234

41.3

799

13

15.87

15.87

13.8

27.6

42.55

G4D24c

312

41.3

799

13

25.4

25.4

13.8

27.6

61.93

C3D6a

57

164.7

1550

9.5

12.7

12.7

13.8

27.6

15.68

C3D12a

114

164.7

1550

9.5

12.7

12.7

13.8

27.6

26.73

C3D12b

114

164.7

1550

9.5

19.05

19.05

13.8

27.6

30.62

C3D12c

114

164.7

1550

9.5

25.4

25.4

13.8

27.6

28.8

C3D18a

171

164.7

1550

9.5

12.7

12.7

13.8

27.6

42.06

C3D24b

228

164.7

1550

9.5

19.05

19.05

13.8

27.6

43.97

C3S6a

57

164.7

1550

9.5

12.7

12.7

13.8

27.6

13.19

C3S12a

114

164.7

1550

9.5

12.7

12.7

13.8

27.6

17.47

C3S12b

114

164.7

1550

9.5

19.05

19.05

13.8

27.6

15.4

C3S12c

114

164.7

1550

9.5

25.4

25.4

13.8

27.6

17.49

C3S18a

171

164.7

1550

9.5

12.7

12.7

13.8

27.6

24.92

C3S24a

228

164.7

1550

9.5

12.7

12.7

13.8

27.6

22.36

C4S6

78

104.8

1875

13

15.87

15.87

13.8

27.6

22.61

C4S12

156

104.8

1875

13

15.87

15.87

13.8

27.6

25.98

C4S18

234

104.8

1875

13

15.87

15.87

13.8

27.6

29.52

C4S24

312

104.8

1875

13

15.87

15.87

13.8

27.6

35.3

[24]

C-r-S-1.5-A6

250

149

1650

9.5

14.25

14.25

48

28.5

8.72

C-r-S-2-A6

250

149

1650

9.5

19

19

48

28.5

9.44

C-r-S-2.5-A6

250

149

1650

9.5

23.75

23.75

48

28.5

8.93

C-r-SWSC-1.5-A6

250

130

2300

10

15

15

48

28.5

70.94

C-r-SWSC-2-A6

250

130

2300

10

20

20

48

28.5

66.19

C-r-SWSC-2.5-A6

250

130

2300

10

25

25

48

28.5

71.64

C-r-SC-1.5-A6

250

130

2300

7.5

11.25

11.25

48

28.5

48.26

C-r-SC-2-A6

250

130

2300

7.5

15

15

48

28.5

54.47

C-r-SC-2.5-A6

250

130

2300

7.5

18.75

18.75

48

28.5

56.19

C-r-Ri-1.5-A6

250

143

2328

9

13.5

13.5

48

28.5

57.53

C-r-Ri-2-A6

250

143

2328

9

18

18

48

28.5

62.2

C-r-Ri-2.5-A6

250

143

2328

9

22.5

22.5

48

28.5

72.95

C-r-Ro-1.5-A6

250

117

1617

9

13.5

13.5

48

28.5

59.63

C-r-Ro-2-A6

250

117

1617

9

18

18

48

28.5

52.28

C-r-Ro-2.5-A6

250

117

1617

9

22.5

22.5

48

28.5

59.51

C-st-Ro-1.5-A6

250

125

1676

4.5

16

24

13.5

48

28.5

72.06

C-st-Ro-2-A6

250

125

1676

4.5

16

32

15.75

48

28.5

74.11

C-st-Ro-2.5-A6

250

125

1676

4.5

16

40

18

48

28.5

73.54

C-sq-Ro-1.5-A6

250

150

1506

10

10

15

15

48

28.5

71.19

C-sq-Ro-2-A6

250

150

1506

10

10

20

20

48

28.5

75.02

C-sq-Ro-2.5-A6

250

150

1506

10

10

25

25

48

28.5

71.91

G-r-SWSCI-1.5-A6

250

41

760

10

15

15

48

28.5

70.74

G-r-SWSCI-2-A6

250

41

760

10

20

20

48

28.5

74.58

G-r-SWSCI-2.5-A6

250

41

760

10

25

25

48

28.5

71.46

G-r-Gr-1.5-A6

250

55

1150

10

15

15

48

28.5

80.51

G-r-Gr-2-A6

250

55

1150

10

20

20

48

28.5

85.26

G-r-Gr-2.5-A6

250

55

1150

10

25

25

48

28.5

92.69

G-r-Ri-1.5-A6

250

47

1080

9

13.5

13.5

48

28.5

49.88

G-r-Ri-2-A6

250

47

1080

9

18

18

48

28.5

54.95

G-r-Ri-2.5-A6

250

47

1080

9

22.5

22.5

48

28.5

63.32

C-r-Ro-1.5-A6

250

117

1617

9

13.5

13.5

48

28.5

60.08

C-r-Ro-1.5-A7

250

117

1617

9

13.5

13.5

61.4

28.5

47.38

[25]

B-8-SC-2

300

46

1272

8

14

14

28

19

33.1

B-8-SC-3

300

46

1272

8

14

14

28

19

30.2

B-6-SC-1

300

46

1282

6

10.02

10.02

28

19

33.9

B-6-SC-2

300

46

1282

6

10.02

10.02

28

19

28.8

C-8-S-1

300

155

2495

8

14

14

28

19

48.5

C-8-S-2

300

155

2495

8

14

14

28

19

55.3

C-8-S-3

300

155

2495

8

14

14

28

19

45.2

G-8-RB-2

300

59

1333

8

14

14

28

19

45.3

G-8-RB-3

300

59

1333

8

14

14

28

19

50.9

C-2.5*15-S-1

300

182

2863

2.5

15

25.02

8

28

19

53

C-2.5*15-S-2

300

182

2863

2.5

15

25.02

8

28

19

56

C-2.5*15-S-3

300

182

2863

2.5

15

25.02

8

28

19

46.3

[3]

C12/60/S/1.6P

60.39

141

2300

12

16

16

90

60

27.7

C12/60/S/3.2P

120.58

141

2300

12

16

16

90

60

39.7

C12/60/S/6.4P

241.15

141

2300

12

16

16

90

60

51.5

C12/60/S/12.7P

478.54

141

2300

12

16

16

90

60

73.1

A9/60/L/1.6P

45.22

120

2070

9

18

18

90

60

19.1

A9/60/L/3.2P

90.34

120

2070

9

18

18

90

60

34.9

A9/60/L/6.4P

180.86

120

2070

9

18

18

90

60

58.2

A9/60/L/12.7P

358.9

120

2070

9

18

18

90

60

79

A12/60/S/1.6P

60.39

127

2070

12

16

16

90

60

26.1

A12/60/S/3.2P

120.58

127

2070

12

16

16

90

60

46.9

A12/60/S/6.4P

241.15

127

2070

12

16

16

90

60

70.5

A12/60/S/12.7P

478.54

127

2070

12

16

16

90

60

76

A9/60/S/1.6P

45.22

120

2070

9

13

13

90

60

21.6

A9/60/S/3.2P

90.43

120

2070

9

13

13

90

60

33.1

A9/60/S/6.4P

180.86

120

2070

9

13

13

90

60

52.9

A9/60/S/12.7P

358.9

120

2070

9

13

13

90

60

68.4

C12/30/S/1.6P

60.39

141

2300

12

16

16

90

30

28.6

C12/30/S/3.2P

120.58

141

2300

12

16

16

90

30

37.3

C12/30/S/6.4P

241.15

141

2300

12

16

16

90

30

66.2

C12/30/S/12.7P

478.54

141

2300

12

16

16

90

30

69

A9/30/S/1.6P

45.22

120

2070

9

13

13

90

30

20.1

A9/30/S/3.2P

90.43

120

2070

9

13

13

90

30

27.6

A9/30/S/6.4P

180.86

120

2070

9

13

13

90

30

44.8

A9/30/S/12.7P

358.9

120

2070

9

13

13

90

30

50.7

R/60/S/1.6P

57.6

123

2040

2

16

20

6

90

60

28.1

R/60/S/3.2P

115.2

123

2040

2

16

20

6

90

60

34.3

R/60/S/6.4P

230.4

123

2040

2

16

20

6

90

60

50.8

R/60/S/12.7P

457.2

123

2040

2

16

20

6

90

60

57.1

R/60/L/1.6P

57.6

123

2040

2

16

24

10

90

60

26.2

R/60/L/3.2P

115.2

123

2040

2

16

24

10

90

60

43.4

R/60/L/6.4P

230.4

123

2040

2

16

24

10

90

60

61.6

S/60/S/Sika/1.6P

64

137

2720

10

10

14

14

90

60

31.8

S/60/S/Sika/3.2P

128

137

2720

10

10

14

14

90

60

50.1

S/60/S/Sika/6.4P

256

137

2720

10

10

14

14

90

60

73.4

S/60/S/Sika/12.7P

508

137

2720

10

10

14

14

90

60

94.2

S/60/L/Sika/1.6P

64

137

2720

10

10

18

18

90

60

33.7

S/60/L/Sika/3.2P

128

137

2720

10

10

18

18

90

60

56.2

S/60/L/Sika/6.4P

256

137

2720

10

10

18

18

90

60

40.7

S/60/L/Sto/1.6P

64

137

2720

10

10

18

18

90.7

60

28.8

S/60/L/Sto/3.2P

128

137

2720

10

10

18

18

90.7

60

50.5

S/60/L/Sto/6.4P

256

137

2720

10

10

18

18

90.7

60

87.1

S/60/L/Sto/12.7P

508

137

2720

10

10

18

18

90.7

60

77.4

S/60L/Sto/12.7P-re

508

137

2720

10

10

18

18

90.7

60

64.4

[5]

B-6-SC-1

300

46

1282

6

10

10

27.5

19

33.87

B-6-SC-2

300

46

1282

6

10

10

27.5

19

28.84

B-6-SC-3

300

46

1282

6

10

10

27.5

19

36.32

B-8-SC-1

300

46

1272

8

14

14

27.5

19

31.57

B-8-SC-2

300

46

1272

8

14

14

27.5

19

33.1

B-8-SC-3

300

46

1272

8

14

14

27.5

19

30.24

G-8-SW-1

300

51

1250

8

14

14

27.5

19

17.72

G-8-SW-2

300

51

1250

8

14

14

27.5

19

40.8

G-8-SW-3

300

51

1250

8

14

14

27.5

19

38.04

G-8-RB-1

300

59

1333

8

14

14

27.5

19

46.71

G-8-RB-2

300

59

1333

8

14

14

27.5

19

45.25

G-8-RB-3

300

59

1333

8

14

14

27.5

19

50.86

C-8-S-1

300

155

2495

8

14

14

27.5

19

48.52

C-8-S-2

300

155

2495

8

14

14

27.5

19

55.3

C-8-S-3

300

155

2495

8

14

14

27.5

19

45.23

C-10X10-S-1

300

159

1397

10

10

15

15

27.5

19

51.72

C-10X10-S-2

300

159

1397

10

10

15

15

27.5

19

47.89

C-10X10-S-3

300

159

1397

10

10

15

15

27.5

19

51.56

C-1.4X10-S-1

300

177

2221

1.4

10

15

5

27.5

19

31.16

C-1.4X10-S-2

300

177

2221

1.4

10

15

5

27.5

19

32.93

C-1.4X10-S-3

300

177

2221

1.4

10

15

5

27.5

19

34.73

C-2.5X15-S-1

300

182

2863

2.5

15

25

8

27.5

19

52.97

C-2.5X15-S-1

300

182

2863

2.5

15

25

8

27.5

19

56.03

C-2.5X15-S-1

300

182

2863

2.5

15

25

8

27.5

19

46.26

[26]

C-8-SW-14X14-1

300

100

1040

8

14

14

27.5

19

47.48

C-8-SW-14X14-2

300

100

1040

8

14

14

27.5

19

48.22

C-8-SW-14X14-3

300

100

1040

8

14

14

27.5

19

46.02

B-8-SC-20X20-1

300

46

1272

8

20

20

27.5

19

44.84

B-8-SC-20X20-2

300

46

1272

8

20

20

27.5

19

39.02

B-8-SC-20X20-3

300

46

1272

8

20

20

27.5

19

42.8

B-10-SC-15X15-1

300

42

1204

10

15

15

27.5

19

38.02

B-10-SC-15X15-2

300

42

1204

10

15

15

27.5

19

40

B-10-SC-15X15-3

300

42

1204

10

15

15

27.5

19

39

B-10-SC-20X20-1

300

42

1204

10

20

20

27.5

19

43.46

B-10-SC-20X20-2

300

42

1204

10

20

20

27.5

19

41.12

B-10-SC-20X20-3

300

42

1204

10

20

20

27.5

19

38.96

[36]

Gent-C-SC-6

300

124

2068

6

12

12

50

30

33

Gent-B-SC-6

300

52.5

1470

6

12

12

30

30

38.4

Gent-B-SC-8

300

51

1324

8

14

14

30

30

39.8

Gent-C-S-1.4X10

300

165

1850

1.4

10

15

5

50

30

24.6

Gent-G-RB-8

300

60

1500

8

14

14

30

30

51.7

Gent-C-STR-2X16

300

165

3100

2

16

25

8

50

30

59.9

Gent-C-SM-8

300

155

2800

8

14

14

50

30

56.9

Gent-C-STR-10X10

300

155

2000

10

10

15

15

50

30

61

Gent-G-SpW-8

300

55

1290

8

14

14

30

30

43.7

Minho-C-SC-6

300

124

2068

6

12

12

50

32

36.7

Minho-B-SC-6

300

52.5

1470

6

12

12

30

32

26.5

Minho-B-SC-8

300

51

1324

8

14

14

30

32

33.5

Minho-C-S-1.4X10

300

165

1850

1.4

10

15

5

50

32

39.1

Minho-G-RB-8

300

60

1500

8

14

14

30

32

40.3

Minho-C-STR-2X16

300

165

3100

2

16

25

8

50

32

48

Minho-C-SM-8

300

155

2800

8

14

14

50

32

47.4

Minho-C-STR-10X10

300

155

2000

10

10

15

15

50

32

58.9

Naples-B-SC-6

300

52.5

1470

6

12

12

30

23

33

Naples-B-SC-8

300

51

1324

8

12

12

30

23

31.6

Naples-G-RB-8

300

60

1500

8

14

14

30

23

47.6

Naples-C-STR-2X16

300

165

3100

2

16

25

8

50

23

51.7

Naples-C-SM-8

300

155

2800

8

14

14

50

23

49.6

Naples-C-STR-10X10

300

155

2000

10

10

15

15

50

23

50.3

Naples-G-RB-8′

300

55

1290

8

14

14

30

23

32.2

Buda-C-SC-6

300

124

2068

6

12

12

50

42

33.9

Buda-B-SC-6

300

52.5

1470

6

12

12

30

42

30.6

Buda-C-S-1.4X10

300

165

1850

1.4

10

15

5

50

42

25.1

Buda-G-RB-8

300

60

1500

8

14

14

30

42

44.7

Buda-C-STR-2X16-1

300

165

3100

2

16

25

8

50

42

39.7

Buda-C-STR-2X16-2

300

165

3100

2

16

25

8

50

42

40

Buda-C-STR-2X16-3

300

165

3100

2

16

25

8

50

42

40.6

Buda-C-SM-8-1

300

155

2800

8

14

14

50

42

41.1

Buda-C-SM-8-2

300

155

2800

8

14

14

50

42

42.7

Buda-C-STR-10X10

300

155

2000

10

10

15

15

50

42

58.3

[27]

30MPa-100-10

100

161.8

2643

1.2

10

12

3.2

16

30

13

30MPa-100-10

100

161.8

2643

1.2

10

12

3.2

16

30

22.6

30MPa-100-10

100

161.8

2643

1.22

10.02

12.02

3.22

16

30

20.4

30MPa-150-10

150

161.8

2643

1.23

10.33

12.33

3.23

16

30

23.2

30MPa-200-10

200

161.8

2643

1.22

10.48

12.48

3.22

16

30

27.9

30MPa-250-10

250

161.8

2643

1.22

10.29

12.29

3.22

16

30

26.6

30MPa-300-10

300

161.8

2643

1.22

10.38

12.38

3.22

16

30

26

30MPa-350-10

350

161.8

2643

1.22

10.35

12.35

3.22

16

30

23

42MPa-200-10

200

161.8

2643

1.27

10.29

12.29

3.27

16

41.8

30.6

48MPa-200-10

200

161.8

2643

1.28

10.1

12.1

3.28

16

48.2

33.7

49MPa-200-10

200

161.8

2643

1.26

10.56

12.56

3.26

16

49.2

33.3

49MPa-200-20

200

162.3

2796

1.28

20.43

22.43

3.28

16

49.2

68.6

49MPa-100-20

100

162.3

2796

1.27

20.37

22.37

3.27

16

49.2

64.1

49MPa-200-20

200

162.3

2796

1.28

20.22

22.22

3.28

16

49.2

75

49MPa-300-20

300

162.3

2796

1.24

19.79

21.79

3.24

16

49.2

68.1

30MPa-100-20

100

162.3

2796

1.2

20

22

3.2

16

30

51.4

30MPa-200-20

200

162.3

2796

1.2

20

22

3.2

16

30

57.8

30MPa-300-20

300

162.3

2796

1.2

20

22

3.2

16

30

66.7

65MPa-200-10

200

144.6

2634

2.88

10.08

12.08

4.88

16

64.8

45

53MPa-200-10

200

161.8

2643

1.24

10.23

12.23

3.24

16

52.8

31.9

53MPa-200-20

200

162.3

2796

1.26

20.47

22.47

3.26

16

52.8

77.9

53MPa-200-10

200

161.8

2643

1.3

10.43

12.43

3.3

16

53

34

53MPa-200-20

200

162.3

2796

1.27

20.1

22.1

3.27

16

53

72.5

53MPa-100-10

100

161.8

2643

1.26

10.37

12.37

3.26

16

53

29.5

53MPa-300-10

300

161.8

2643

1.27

10.3

12.3

3.27

16

53

37.9

53MPa-100-20

100

162.3

2796

1.25

20.23

22.23

3.25

16

53

63.8

53MPa-300-20

300

162.3

2796

1.25

20.15

22.15

3.25

16

53

66.3

33MPa-100-15

100

161.8

2643

1.26

14.93

16.93

3.26

16

33.4

31.9

33MPa-200-15

200

161.8

2643

1.26

15.65

17.65

3.26

16

33.4

47.5

33MPa-300-15

300

161.8

2643

1.26

15.31

17.31

3.26

16

33.4

51.6

65MPa-200-10

200

161.8

2643

2.9

9.95

11.95

4.9

16

64.8

45.1

33MPa-300-20

300

162.3

2796

1.24

19.85

21.85

3.24

16

33.4

67.8

33MPa-200-20

200

162.3

2796

1.2

20

22

3.2

16

33.4

60.7

[30]

N/C-10-E-1.5-6

57

128

1546

9.5

14.25

14.25

43.5

41

28.68

N/C-10-E-1.5-12

114

128

1546

9.5

14.25

14.25

43.5

41

52.45

N/C-10-E-1.5-18

171

128

1546

9.5

14.25

14.25

43.5

41

74.85

N/C-10-E-1.5-24

228

128

1546

9.5

14.25

14.25

43.5

41

84.77

N/C-10-E-2.0-6

57

128

1546

9.5

19

19

43.5

41

35.56

N/C-10-E-2.0-12

114

128

1546

9.5

19

19

43.5

41

59.35

N/C-10-E-2.0-18

171

128

1546

9.5

19

19

43.5

41

64.57

N/C-10-E-2.0-24

228

128

1546

9.5

19

19

43.5

41

75.62

N/C-10-E-2.0-36

324

128

1546

9.5

19

19

43.5

41

96.29

N/C-10-E-2.0-48

456

128

1546

9.5

19

19

43.5

41

96.23

N/C-13-E-1.5-18

228.6

134

1250

12.7

19.05

19.05

43.5

41

48.83

N/C-13-E-2.0-18

228.6

134

1250

12.7

25.4

25.4

43.5

41

49.05

N/G-13-E-2.0-12

152.4

42

749

12.7

25.4

25.4

43.5

41

52.19

N/G-13-E-2.0-18

228.6

42

749

12.7

25.4

25.4

43.5

41

66.93

N/G-13-E-2.0-24

304.8

42

749

12.7

25.4

25.4

43.5

41

77.74

N/G-13-E-2.0-36

457.2

42

749

12.7

25.4

25.4

43.5

41

79.8

[31]

7-2/2-3D-CF

36

124

2068

12

20

20

30

30.8

10.3

7-2/2-5D-CF

60

124

2068

12

20

20

30

30.8

17.3

7-2/2-10D-CF

120

124

2068

12

20

20

30

30.8

32.5

8-2/4-3D-CF

36

124

2068

12

40

20

30

30.8

15.3

8-2/4-5D-CF

60

124

2068

12

40

20

30

30.8

20.2

8-2/4-10D-CF

120

124

2068

12

40

20

30

30.8

38.5

[32]

Anchorfix-3-t1

152

130

2100

2

16

19

6.4

32.4

60.1

29.8

Anchorfix-3-t2

152

130

2100

2

16

19

6.4

32.4

60.1

34.2

Anchorfix-3-t3

152

130

2100

2

16

19

6.4

32.4

60.1

30.2

Anchorfix-3-t4

152

130

2100

2

16

19

6.4

32.4

60.1

26.7

Anchorfix-3-t5

152

130

2100

2

16

19

6.4

32.4

60.1

29.4

Anchorfix-3-t6

152

130

2100

2

16

19

6.4

32.4

60.1

30.2

Concresive1420-t1

152

130

2100

2

16

19

6.4

27.6

60.1

42.3

Concresive1420-t2

152

130

2100

2

16

19

6.4

27.6

60.1

37.8

Concresive1420-t3

152

130

2100

2

16

19

6.4

27.6

60.1

50.3

Concresive1420-t4

152

130

2100

2

16

19

6.4

27.6

60.1

42.7

Concresive1420-t5

152

130

2100

2

16

19

6.4

27.6

60.1

34.2

Concresive1420-t6

152

130

2100

2

16

19

6.4

27.6

60.1

37.8

Epofil-t1

152

130

2100

2

16

19

6.4

50.3

60.1

58.7

Epofil-t3

152

130

2100

2

16

19

6.4

50.3

60.1

52.9

Epofil-t4

152

130

2100

2

16

19

6.4

50.3

60.1

53.8

Epofil-t5

152

130

2100

2

16

19

6.4

50.3

60.1

59.2

Epofil-t6

152

130

2100

2

16

19

6.4

50.3

60.1

59.2

Sikadure35-t3

152

130

2100

2

16

19

6.4

61.4

60.1

52.5

Sikadure35-t4

152

130

2100

2

16

19

6.4

61.4

60.1

53.8

Sikadure35-t5

152

130

2100

2

16

19

6.4

61.4

60.1

49.8

Sikadure35-t6

152

130

2100

2

16

19

6.4

61.4

60.1

53.4

Sikadure32-t1

152

130

2100

2

16

19

6.4

35.2

60.1

53.4

Sikadure32-t2

152

130

2100

2

16

19

6.4

35.2

60.1

53.4

Sikadure32-t3

152

130

2100

2

16

19

6.4

35.2

60.1

55.2

Sikadure32-t5

152

130

2100

2

16

19

6.4

35.2

60.1

60.5

Sikadure32-t6

152

130

2100

2

16

19

6.4

35.2

60.1

56.5

DP460NS-t1

152

130

2100

2

16

19

6.4

35.2

60.1

76.1

DP460NS-t2

152

130

2100

2

16

19

6.4

35.2

60.1

62.7

DP460NS-t3

152

130

2100

2

16

19

6.4

35.2

60.1

81.4

DP460NS-t4

152

130

2100

2

16

19

6.4

35.2

60.1

76.1

DP460NS-t5

152

130

2100

2

16

19

6.4

35.2

60.1

79.6

DP460NS-t6

152

130

2100

2

16

19

6.4

35.2

60.1

65.4

[33]

C-r-Ro-1.5-A6

250

124

2068

9

13.5

13.5

35.2

28.5

60.08

C-r-Ro-1.5-A7

250

124

2068

9

13.5

13.5

61.4

28.5

47.38

C-r-SC-2.0-A6

250

130

2300

7.5

15

15

35.2

28.5

56.19

C-r-Ri-2.0-A6

250

150

2185

9

18

18

35.2

28.5

62.2

C-r-Ro-2.0-A6

250

124

2068

9

18

18

35.2

28.5

52.28

[34]

C-SC-9

300

124

1896

9.5

15

15

50

37.4

57.8

B-SC-6

300

55

1413

6

12

12

30

37.4

28.4

B-SC-8

300

50

1285

8

15

15

30

36.2

39.8

G-RB-10

300

40.8

760

10

15

15

30

36.2

50.6

C-STR-2x16

300

124

2068

2

16

25

8

50

35

46.5

C-SM-8

300

155

2800

8

15

15

50

35

56.9

[35]

A-5G25

60

124

2108

12

25

25

30

30

15.2

B-5G25-J

60

124

2108

12

25

25

30

30

16.92

C-5G20

60

124

2108

12

20

20

30

30

12.05

D-3G25

36

124

2108

12

25

25

30

30

7.96

E-3G20

36

124

2108

12

20

20

30

30

7.17

F-7.5G25

90

124

2108

12

25

25

30

30

18.2

G-10G25

120

124

2108

12

25

25

30

30

21.6

H-10G20

120

124

2108

12

20

20

30

30

19.4

[37]

CR3/k1.33/104-e

38

109.27

2014

9.5

15

15

28

22

13.12

CR3/k1.59/104-e

38

109.27

2014

9.5

18

18

28

22

17.91

CR3/k2.12/104-e

38

109.27

2014

9.5

24

24

28

22

19.33

CR3/k1.24/124-e

228

109.27

2014

9.5

14

14

28

22

52.16

CR3/k1.59/124-e

228

109.27

2014

9.5

18

18

28

22

50.8

CR3/k2.12/124-e

228

109.27

2014

9.5

24

24

28

22

66.47

GR3/k1.36/104-e

38

37.17

873

9.5

15

15

28

22

10.67

GR3/k1.64/104-e

38

37.17

873

9.5

18

18

28

22

14.68

GR3/k2.18/104-e

38

37.17

873

9.5

24

24

28

22

14.57

GR3/k1.27/124-e

228

37.17

873

9.5

14

14

28

22

26.45

GR3/k1.64/124-e

228

37.17

873

9.5

18

18

28

22

39.55

GR3/k2.18/124-e

228

37.17

873

9.5

24

24

28

22

32.04

SW/k1.50/104-e

30

174.71

2214

7.5

12

12

28

22

12.75

SW/k2.00/104-e

30

174.71

2214

7.5

16

16

28

22

14.67

SW/k2.50/104-e

30

174.71

2214

7.5

20

20

28

22

15.5

SW/k1.50/112-e

90

174.71

2214

7.5

12

12

28

22

28.86

SW/k2.00/112-e

90

174.71

2214

7.5

16

16

28

22

25.62

SW/k2.50/112-e

90

174.71

2214

7.5

20

20

28

22

37.27

SW/k1.50/124-e

180

174.71

2214

7.5

12

12

28

22

41.32

SW/k2.00/124-e

180

174.71

2214

7.5

16

16

28

22

60

SW/k2.50/124-e

180

174.71

2214

7.5

20

20

28

22

67.43

[38]

SD30-1.5D

304.8

60.4

1478

12.7

19.05

19.05

14

37.2

64.9

SD30-2.0D

304.8

60.4

1478

12.7

25.4

25.4

14

37.2

77

SD42-1.5D

304.8

60.4

1478

12.7

19.05

19.05

6

37.2

60.8

SD42-2.0D

304.8

60.4

1478

12.7

25.4

25.4

6

37.2

86.2

SD-42.16D

203.2

60.4

1478

12.7

25.4

25.4

6

64.8

85.7

SD-31.16D

203.2

60.4

1478

12.7

25.4

25.4

14

64.8

85

[39]

T2.0-C15

250

131

2068

2

16

30

10

31.9

15

59

T2.0-C40

250

131

2068

2

16

30

10

31.9

40

63

T2.0-C60

250

131

2068

2

16

30

10

31.9

60

56

T4.5-C15

250

131

2068

4.5

16

30

10

31.9

15

68

T4.5-C40

250

131

2068

4.5

16

30

10

31.9

40

74

T4.5-C60

250

131

2068

4.5

16

30

10

31.9

60

88

T2.0-BL80

80

131

2068

2

16

30

10

31.9

40

31

T2.0-BL120

120

131

2068

2

16

30

10

31.9

40

41

T2.0-BL160

160

131

2068

2

16

30

10

31.9

40

57

T2.0-BL200

200

131

2068

2

16

30

10

31.9

40

55

T2.0-BL250

250

131

2068

2

16

30

10

31.9

40

63

T2.0-BL320

320

131

2068

2

16

30

10

31.9

40

63

T2.0-BL400

400

131

2068

2

16

30

10

31.9

40

56

T4.5-BL80

80

131

2068

4.5

16

30

10

31.9

40

37

T4.5-BL80

120

131

2068

4.5

16

30

10

31.9

40

54

T4.5-BL80

160

131

2068

4.5

16

30

10

31.9

40

60

T4.5-BL80

200

131

2068

4.5

16

30

10

31.9

40

59

T4.5-BL80

240

131

2068

4.5

16

30

10

31.9

40

84

T4.5-BL80

250

131

2068

4.5

16

30

10

31.9

40

76

T4.5-BL80

320

131

2068

4.5

16

30

10

31.9

40

100

T2.0-GE60

250

131

2068

2

16

30

10

31.9

40

62

T4.5-GE60

250

131

2068

4.5

16

30

10

31.9

40

73

  1. Db is the diameter of FRP bars, whereas tf and wf are the dimensions of FRP strips

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahzadeh, K., Afzali, S. Fuzzy logic model for pullout capacity of near-surface-mounted FRP reinforcement bonded to concrete. Neural Comput & Applic 31, 7837–7865 (2019). https://doi.org/10.1007/s00521-018-3590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3590-2

Keywords

Navigation