Skip to main content

Advertisement

Log in

Impact of respiratory physical therapy on heart rate autonomic control in children with leukemia

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Introduction

Considering that heart rate (HR) autonomic control is impaired in cancer and subsequent respiratory effort may overload the heart, we aimed to evaluate the effect of a respiratory physical therapy session on HR autonomic regulation in children with leukemia so as to confirm its safety.

Methods

We selected children with leukemia (n = 10) and healthy children (n = 11), which were submitted to a session of respiratory physical therapy. We used Spiron Kids (NCS, Brazil), Children’s Voldyne (HUDSON RCI, USA), and Shaker (NCS, Brazil) as respiratory devices. The respiratory exercise protocols were founded on three standardized protocols. HR variability (HRV) was analyzed before, in the first minute and 5 to 10 min after intervention.

Results

We recognized no change between rest and recovery from intervention in HRV (rMSSD—square root mean square of the differences between adjacent normal R-R intervals)—Control: p = 0.8111, Leukemia: p = 0.1197, among groups: p = 0.6574; SD1—standard deviation from instantaneous beat-to-beat variability—Control: p = 0.8111, Leukemia: p = 0.131, among groups: p = 0.6556; 0V—with no variation (3 equal symbols, for example (2,2,2)—Control: p = 0.3679, Leukemia: p = 0.3553, among groups: p = 0.7421); 2UV—with two variations to the contrary (the three symbols form a peak or a valley, for instance (3,5,3)—Control: p = 0.3679, Leukemia: p = 0.2359, among groups: p = 0.4007). HF—high frequency component, range 0.15 to 0.4 Hz—decreased 0 to 1 min after intervention in the leukemia group (p = 0.0303) and no change was observed in the control group between rest versus recovery from intervention (p = 0.9761). No significant change was reported in HF between groups (p = 0.8700). Two leukemia subjects treated with vincristine presented different HRV responses to the intervention group.

Conclusion

A respiratory physical therapy session did not significantly change autonomic control of HR in children with leukemia. Yet, clinicians should be mindful of subjects undergoing treatment with vincristine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pokharel M (2012) Leukemia : a review article. Int J Adv Res Pharmacuetical Bio Sci [Internet] 2(3):397–407 Available from: www.ijarpb.com. Accessed July 2019

  2. De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’ [Internet]. Vol. 6, Blood Cancer J. 2016. p. e441–e441. Available from: http://www.nature.com/articles/bcj201650. Accessed June 2019

  3. Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J [Internet] 7(6):e577. Available from:. https://doi.org/10.1038/bcj.2017.53

    Article  CAS  Google Scholar 

  4. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review [Internet]. Vol. 44, Med Biol Eng Comput. 2006. p. 1031–1051. Available from: https://doi.org/10.1007/s11517-006-0119-0

  5. Hall, John Edward, Guyton AC (2007) Tratado de fisiologia médica. 13th ed. Rio de Janeiro

  6. Vanderlei LCM, Pastre CM, Hoshi RA, de Carvalho TD, de Godoy MF (2009) Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Rev Bras Cir Cardiovasc [Internet] 24(2):205–217 Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382009000200018&lng=pt&nrm=iso&tlng=pt. Accessed June 2019

  7. Stone CA, Kenny RA, Nolan B, Lawlor PG (2012) Autonomic dysfunction in patients with advanced cancer; prevalence, clinical correlates and challenges in assessment. BMC Palliat Care [Internet]. BioMed Central Ltd;11(1):3. Available from: http://www.biomedcentral.com/1472-684X/11/3. Accessed Mar 2019

  8. Albarado-Ibañez A, Arroyo-Carmona RE, Sánchez-Hernández R, Ramos-Ortiz G, Frank A, García-Gudiño D, Torres-Jácome J (2019) The role of the autonomic nervous system on cardiac rhythm during the evolution of diabetes mellitus using heart rate variability as a biomarker. J Diabetes Res 2019:1–10

    Article  Google Scholar 

  9. Sekiguchi Y, Adams WM, Benjamin CL, Curtis RM, Giersch GEW, Casa DJ. Relationships between resting heart rate, heart rate variability and sleep characteristics among female collegiate cross-country athletes. J Sleep Res [Internet]. 2019 6;(January):e12836. Available from: https://doi.org/10.1111/jsr.12836

  10. Nevruz O, Yokusoglu M, Uzun M, Demirkol S, Avcu F, Baysan O, Koz C, Cetin T, Sag C, Ural AU, Isik E (2007) Cardiac autonomic functions are altered in patients with acute leukemia, assessed by heart rate variability. Tohoku J Exp Med [Internet] 211(2):121–126 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/tjem/211.121?from=CrossRef. Accessed Jan 2019

  11. Caru M, Corbin D, Périé D, Lemay V, Delfrate J, Drouin S, et al. (2019) Doxorubicin treatments induce significant changes on the cardiac autonomic nervous system in childhood acute lymphoblastic leukemia long-term survivors. Clin Res Cardiol [Internet]. Springer Berlin Heidelberg; 0(0):0. Available from: https://doi.org/10.1007/s00392-019-01427-9

  12. Nazir HF, AlFutaisi A, Zacharia M, Elshinawy M, Mevada ST, Alrawas A, et al. Vincristine-induced neuropathy in pediatric patients with acute lymphoblastic leukemia in Oman: frequent autonomic and more severe cranial nerve involvement. Pediatr Blood Cancer [Internet]. 2017 64(12):e26677. Available from: https://doi.org/10.1002/pbc.26677

  13. Hirvonen HE, Salmi TT, Heinonen E, Antila KJ, Välimäki IA. Vincristine treatment of acute lymphoblastic leukemia induces transient autonomic cardioneuropathy. Cancer [Internet] 1989;64(4):801–805. Available from: https://doi.org/10.1002/1097-0142%2819890815%2964%3A4%3C801%3A%3AAID-CNCR2820640406%3E3.0.CO%3B2-E. Accessed Aug 2019

  14. San Juan AF, Fleck SJ, Chamorro-Viña AC, Maté-Muñoz JL, Moral S, Perez M et al (2007) Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sport Exerc [Internet] 39(1):13–21 Available from: https://insights.ovid.com/crossref?an=00005768-200701000-00004. Accessed Jan 2019

  15. Silva CM, De Moraes MLM, Freire M, Rezende CR (2018) Avaliação da função pulmonar, força muscular periférica, independência funcional e qualidade de vida em pacientes com leucemia e linfoma durante internamento hospitalar—séries de casos. Rev Ciências Médicas e Biológicas 17(2):194

    Article  Google Scholar 

  16. Cipolat S, Pereira BBFF (2011) Fisioterapia em Pacientes com Leucemia : Revisão Sistemática. Rev Bras Cancerol [Internet] 57(2):229–236 Available from: https://rbc.inca.gov.br/site/arquivos/n_57/v02/pdf/11_revisao_literatura_fisioterapia_pacientes_leucemia_revisao_sistematica.pdf. Accessed May 2019

  17. Perondi MB, Gualano B, Artioli GG, Painelli V de S, Filho VO, Netto G, et al. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia. J Sports Sci Med 2012;11(3):387–392

  18. Kim S, Song IC, Jee S (2017) Cardiopulmonary exercise test in leukemia patients after chemotherapy: a feasibility study. Ann Rehabil Med 41(3):456–464

    Article  Google Scholar 

  19. Huang T-T, Ness KK (2011) Exercise interventions in children with cancer: a review. Int J Pediatr [Internet] 2011:1–11 Available from: http://www.hindawi.com/journals/ijpedi/2011/461512/. Accessed Oct 2019

  20. Braam K, Van der Torre P, Takken T, Veening MA, Van Dulmen-den Broeder E, Kaspers GJL (2016) Physical exercise training interventions for children and young adults during and after treatment for childhood cancer (review). Summary of findings for the main comparison. Cochrane Collab 4:1–50

    Google Scholar 

  21. Lohman TG, Roche AF MR (1988) Anthropometric standardization reference manual. Champaign: Human Kinectics Book

  22. Heinzmann-filho P, Cristina P, Vidal V, Herbert M (2012) Normal values for respiratory muscle strength in healthy preschoolers and school children

  23. Choi WH, Shin MJ, Jang MH, Lee JS, Kim S-Y, Kim H-Y, et al. Maximal inspiratory pressure and maximal expiratory pressure in healthy Korean children. Ann Rehabil Med [Internet]. 2017;41(2):299. Available from: https://doi.org/10.5535/arm.2017.41.2.299

  24. VI Brazilian Guidelines on Hypertension (2010) 95(1678–4170):1–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21085756. Accessed July 2019

  25. Malik M (1996) Heart rate variability standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Eur Heart J 17:354–381

    Article  Google Scholar 

  26. Dias de Carvalho T, Marcelo Pastre C, Claudino Rossi R, de Abreu LC, Valenti VE, Marques Vanderlei LC (2011) Índices geométricos de variabilidade da frequência cardíaca na doença pulmonar obstrutiva crônica. Rev Port Pneumol [Internet] 17(6):260–265 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0873215911000729. Accessed Nov 2019

  27. de Abreu LC, Wajnsztejn R, de Carvalho TD, Marques Vanderlei LC, Godoy AF et al (2014) Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder. Neuropsychiatr Dis Treat [Internet] 10:613 Available from: http://www.dovepress.com/analysis-of-cardiac-autonomic-modulation-of-children-with-attention-de-peer-reviewed-article-NDT. Accessed Apr 2019

  28. Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF (2008) Comparison of the polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Brazilian J Med Biol Res [Internet] 41(10):854–859 Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2008001000004&lng=en&tlng=en. Accessed Sept 2019

  29. Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the Polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc [Internet] 38(5):887–893 Available from: http://journals.lww.com/00005768-200605000-00013. Accessed May 2019

  30. Ernst G. Hidden signals—the history and methods of heart rate variability. Front Public Heal [Internet] 2017;5(October 2017):1–12. Available from: https://doi.org/10.3389/fpubh.2017.00265/full. Accessed Oct 2019

  31. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Prog Biomed 76(1):73–81

    Article  Google Scholar 

  32. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S (2001) Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng 48(11):1282–1291

    Article  CAS  Google Scholar 

  33. Vieira S (2011) Introdução à bioestatística [recurso eletrônico]. 4o edição. Rio de Janeiro: Elsevier. 345 p

  34. Quintana DS. Statistical considerations for reporting and planning heart rate variability case–control studies. Psychophysiology [Internet] 2017;54(3):344–349. Available from: https://doi.org/10.1111/psyp.12798

  35. Zhou X, Ma Z, Zhang L, Zhou S, Wang J, Wang B, et al. (2016) Heart rate variability in the prediction of survival in patients with cancer: a systematic review and meta-analysis. J Psychosom Res [Internet]. Elsevier B.V. 89:20–5. Available from: https://doi.org/10.1016/j.jpsychores.2016.08.004

  36. Fridrik MA, Jaeger U, Petzer A, Willenbacher W, Keil F, Lang A, et al. (2016) Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma. Eur J Cancer [Internet]. Elsevier Ltd; 58(October 2015):112–21. Available from: https://doi.org/10.1016/j.ejca.2016.02.004

  37. De Couck M, Caers R, Spiegel D, Gidron Y (2018) The role of the vagus nerve in cancer prognosis: a systematic and a comprehensive review. J Oncol 2018(3):1–11

    Article  Google Scholar 

  38. De Couck M, Maréchal R, Moorthamers S, Van Laethem JL, Gidron Y (2016) Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol 40:47–51

    Article  Google Scholar 

  39. De Couck M, Caers R (2018) Why we should stimulate the vagus nerve in cancer. 3:2–5

  40. de Melo Machado Guimarães SLP, Brandão SCS, Andrade LR, Maia RJC, Markman Filho B (2015) Hiperatividade simpática cardíaca após quimioterapia: Sinal precoce de cardiotoxicidade? Arq Bras Cardiol 105(3):228–234

    Google Scholar 

  41. do Nascimento Junior P, Módolo NSP, Andrade S, Guimarães MMF, Braz LG, El Dib R. Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev [Internet]. 2014 2014(2). Available from: https://doi.org/10.1002/14651858.CD006058.pub3

  42. Overend TJ, Anderson CM, Lucy SD, Bhatia C, Jonsson BI, Timmermans C (2001) The effect of incentive spirometry on postoperative pulmonary complications: a systematic review [Internet]. Vol. 120, Chest. The American College of Chest Physicians. p. 971–8. Available from: https://doi.org/10.1378/chest.120.3.971

  43. Parreira VF, Tomich GM, Britto RR, Sampaio RF (2005) Assessment of tidal volume and thoracoabdominal motion using volume and flow-oriented incentive spirometers in healthy subjects. Braz J Med Biol Res 38(7):1105–1112

    Article  CAS  Google Scholar 

  44. Kemper KJ, Hamilton CA, McLean TW, Lovato J. Impact of music on pediatric oncology outpatients. Pediatr Res [Internet] 2008;64(1):105–109. Available from: https://doi.org/10.1203/PDR.0b013e318174e6fb

  45. Moreira GL, Ramos EMC, Vanderlei LCM, Ramos D, Manzano BM, Fosco LC (2009) Efeito da técnica de oscilação oral de alta freqüência aplicada em diferentes pressões expiratórias sobre a função autonômica do coração e os parâmetros cardiorrespiratórios. Fisioter e Pesqui 16(2):113–119

    Article  Google Scholar 

  46. Lacerda FA, Garro SA, de Aguiar SG, Pessoa BP, Figueiredo PHS, Diniz G do CLM. Variabilidade da Frequência Cardíaca durante a Utilização de Espirômetros de Incentivo. Rev Bras Cardiol [Internet]. 2014;3(27):158–164. Available from: http://www.onlineijcs.org/sumario/27/pdf/v27n3a02.pdf. Accessed May 2019

  47. Coumbe BGT, Groarke JD. Cardiovascular autonomic dysfunction in patients with cancer. Curr Cardiol Rep [Internet]. Curr Cardiol Rep; 2018 20(8):69. Available from: https://doi.org/10.1007/s11886-018-1010-y

  48. Długosz-Danecka M, Gruszka AM, Szmit S, Olszanecka A, Ogórka T, Sobociński M et al (2018) Primary cardioprotection reduces mortality in lymphoma patients with increased risk of anthracycline cardiotoxicity, Treated by R-CHOP Regimen. Chemotherapy 63(4):238–245

    Article  Google Scholar 

  49. de Paula Vidigal GA, Tavares BS, Garner DM, Porto AA, Carlos de Abreu L, Ferreira C, et al (2016) Slow breathing influences cardiac autonomic responses to postural maneuver. Complement Ther Clin Pract [internet]. Elsevier Ltd;23:14–20. Available from: https://doi.org/10.1016/j.ctcp.2015.11.005

  50. Tavares BS, de Paula Vidigal G, Garner DM, Raimundo RD, de Abreu LC, Valenti VE. Effects of guided breath exercise on complex behaviour of heart rate dynamics. Clin Physiol Funct Imaging [Internet] 2017;37(6):622–629. Available from: https://doi.org/10.1111/cpf.12347

  51. Chang Q, Liu R, Shen Z (2013) Effects of slow breathing rate on blood pressure and heart rate variabilities. Int J Cardiol [internet]. Elsevier Ireland Ltd;169(1):e6–8. Available from: https://doi.org/10.1016/j.ijcard.2013.08.121

  52. da Justa Pinheiro CH, Medeiros RAR, Pinheiro DGM, de Jesus Ferreira Marinho M (2007) Modificação do padrão respiratório melhora o controle cardiovascular na hipertensão essencial. Arq Bras Cardiol [Internet] 88(6):651–659 Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0066-782X2007000600005&lng=pt&nrm=iso&tlng=pt. Accessed Feb 2019

  53. Martinelli B, Damasceno e Souza G, Ricci MDC, Gimenes C, De Conti MHS, Barrile SR. The effect of sets and repetitions of the spirometer by flow in cardiorespiratory parameters. Fisioter em Mov 2014;27(1):11–19

Download references

Acknowledgments

V.E.V. receives financial support from the National Council for Scientific and Technological Development (CNPq, number 302197/2018-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor E. Valenti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 19 kb)

ESM 2

(XLSX 19 kb)

ESM 3

(XLS 41 kb)

ESM 4

(XLS 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirizawa, J.M., Garner, D.M. & Valenti, V.E. Impact of respiratory physical therapy on heart rate autonomic control in children with leukemia. Support Care Cancer 29, 1585–1596 (2021). https://doi.org/10.1007/s00520-020-05629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-020-05629-0

Keywords

Navigation