Skip to main content

Advertisement

Log in

Biofilm: the microbial “bunker” for intravascular catheter-related infection

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Catheter-related infection in cancer patients remains an important health-care problem with major financial implications. During the last few years a better understanding of the pathogenesis of catheter-related infections and the interaction between microorganisms and catheter surfaces has emerged. Recently the influence of biofilm formation in catheter-related infections has been established. The development of biofilm by the colonizing microbes permits attachment of the organisms to the vascular access device and confers resistance to antibiotics and host defense mechanisms. Strategies to overcome the development of biofilm are being developed to prevent catheter- and other medical device-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexander HR (1994) Infectious complications associated with long-term venous access devices: etiology, diagnosis, treatment and prophylaxis. In: Alexander HR (ed) Vascular access in the cancer patient. Lippincott, Philadelphia, pp 112–128

  2. Ashkenazi S, Weiss E, Drucker MM, Bodey GP (1986) Bacterial adherence to intravenous catheters and needles and its influence by cannula type and bacterial surface hydrophobicity. J Lab Clin Med 107:136–140

    CAS  PubMed  Google Scholar 

  3. Balaban N, Giacometti A, Cirioni O, et al (2003) Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis 187:625–630

    Article  CAS  PubMed  Google Scholar 

  4. Branchini ML, Pfaller MA, Rhine-Chalberg J, Frempong T, Isenberg HD (1994) Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis. J Clin Microbiol 32:452–456

    CAS  PubMed  Google Scholar 

  5. Bouza E, Burillo A, Muñoz P (2002) Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 8:265–274

    CAS  PubMed  Google Scholar 

  6. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol 183:5385–5394

    CAS  PubMed  Google Scholar 

  7. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408

    Article  CAS  PubMed  Google Scholar 

  8. Cooper GL, Schiller AL, Hopkins CC (1988) Possible role of capillary action in pathogenesis of experimental catheter-associated dermal tunnel infections. J Clin Microbiol 26:8–12

    CAS  PubMed  Google Scholar 

  9. Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE (1994) Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38:2803–2809

    CAS  PubMed  Google Scholar 

  10. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  11. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    CAS  PubMed  Google Scholar 

  12. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    Article  CAS  PubMed  Google Scholar 

  13. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  Google Scholar 

  14. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  PubMed  Google Scholar 

  15. Eggimann P, Pittet D (2002) Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect 8:295–309

    Article  CAS  PubMed  Google Scholar 

  16. Giacometti A, Cirioni O, Gov Y, et al (2003) RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:1979–1983

    Article  CAS  PubMed  Google Scholar 

  17. Goetz F, Heilmann C, Cramton S (2000) Molecular basis of catheter-associated infections by staphylococci. In: Emödy L (ed) Genes and proteins underlying microbial urinary tract virulence. Plenum, New York, pp 103–111

  18. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  PubMed  Google Scholar 

  19. Gray ED, Peters G, Verstegen M, Regelmann WE (1984) Effect of extracellular slime substance of Staphylococcus epidermidis on the human cellular immune response. Lancet 1:365–367

    Article  CAS  PubMed  Google Scholar 

  20. Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA (1993) Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 167:312–322

    CAS  PubMed  Google Scholar 

  21. Kluger DM, Maki DG (1999) The relative risk of intravascular device related bloodstream infections in adults (abstract). In: Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, p 514

  22. Kuhn DM, Chandra J, Mukherjee PK Ghannoum MA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888

    Article  CAS  PubMed  Google Scholar 

  23. Lewis RE, Kontoyiannis DP, Darouiche RO, Raad II, Prince R (2002) Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob Agents Chemother 46:3499–3505

    Article  CAS  PubMed  Google Scholar 

  24. Linares J, Sitges-Serra A, Garau J, Perez JL, Martin R (1985) Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 21:357–360

    CAS  PubMed  Google Scholar 

  25. Mack D (1999) Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect [Suppl] 43:113–125

    Google Scholar 

  26. Maki DG (1994) Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention, and management. In: Bisno AL, Waldvogel FA (eds) Infections associated with indwelling medical devices, 2nd edn. American Society for Microbiology, Washington DC, pp 155–212

  27. Martin-Lopez JV, Perez-Roth E, Claverie-Martin F, et al (2002) Detection of Staphylococcus aureus clinical isolates harboring the ica gene cluster needed for biofilm establishment. J Clin Microbiol 40:1569–1570

    Article  CAS  PubMed  Google Scholar 

  28. McKenney D, Hübner J, Muller J, Wang Y, Goldmann DA, Pier GB (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 67:1004–1008

    Google Scholar 

  29. Mckenney D, Pouliot KL, Wang Y, Murthy V, Ulrich M, Döring G, et al (1999) Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284:1523–1527

    CAS  PubMed  Google Scholar 

  30. Mermel LA, McCormick RD, Springman SR, Maki DG (1991) The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swanz-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med [Suppl] 91:197–205

    Google Scholar 

  31. O’Gara JP, Humphreys H (2001) Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 50:582–587

    CAS  PubMed  Google Scholar 

  32. O’Grady NP, Alexander M, Dellinger EP, et al (2002) Guidelines for the prevention of intravascular catheter-related infections. CDC Morbidity and Mortality Weekly Report 51:1–29

    Google Scholar 

  33. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS 365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  CAS  PubMed  Google Scholar 

  34. Pascual A (2002) Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect Dis 8:256–264

    Article  CAS  Google Scholar 

  35. Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898

    CAS  PubMed  Google Scholar 

  36. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie W, Bodey GP (1993) Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 15:13–20

    Google Scholar 

  37. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363

    CAS  PubMed  Google Scholar 

  38. Ramage G, Vande Walle K, Wickes BL, López-Ribot JL (2001) Biofilm formation by Candida dublinensis. J Clin Microbiol 39:3234–3240

    Article  CAS  PubMed  Google Scholar 

  39. Rupp ME, Ulphani JS, Fey PD, Mack D (1999) Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67:2656–2659

    CAS  PubMed  Google Scholar 

  40. Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial etiology of nosocomial infection. Am J Med [Suppl] 91:72–75

    Google Scholar 

  41. Sheth NK, Franson TR, Rose HD, Buckmire FL, Cooper JA, Sohnle PG (1983) Colonization of bacteria on polyvinyl chloride and Teflon intravascular catheters in hospitalized patients. J Clin Microbiol 18:1061–1063

    CAS  PubMed  Google Scholar 

  42. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859–871

    Article  CAS  PubMed  Google Scholar 

  43. von Eiff C, Heilman C, Peters G (1999) New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Microbiol Infect Dis 18:843–846

    Article  Google Scholar 

  44. Vuong C, Otto M (2002) Staphylococcus epidermidis infections. Microb Infect 4:481–489

    Article  Google Scholar 

  45. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Google Scholar 

  46. Wilson M (2001) Bacterial biofilms and human disease. Sci Prog 84:235-254

    CAS  PubMed  Google Scholar 

  47. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112:1620–1625

    Article  CAS  PubMed  Google Scholar 

  48. Ziebuhr W, Krimmer V, Rachid S, Löbner I, Götz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are indebted to Bibi Cates for her kind assistance in the development of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, M., Méndez-Alvarez, S., Martín-López, JV. et al. Biofilm: the microbial “bunker” for intravascular catheter-related infection. Support Care Cancer 12, 701–707 (2004). https://doi.org/10.1007/s00520-004-0630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-004-0630-5

Keywords

Navigation