Skip to main content
Log in

Diagnostic algorithms, monitoring, prognostication, and therapy in chronic myeloid leukemia (CML): a proposal of the Austrian CML platform

Diagnostische Algorithmen, Prognose und Therapie in der Chronisch Myeloischen Leukämie (CML): Ein Proposal der Österreichischen CML-Plattform

  • Position Paper
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die chronisch myeloische Leukämie ist eine Stammzellerkrankung, welche durch das BCR/ABL Onkoprotein gekennzeichnet ist. Der ABL Kinase-Inhibitor Imatinib ist in den meisten Patienten wirksam und gilt als Standard in der Erstlinientherapie. Allerdings kommt es in einem Teil der Patienten zur Resistenzentwicklung. Für diese Patienten stehen neue Multikinase-Inhibitoren wie Dasatinib oder Nilotinib sowie die Stammzelltransplantation als prinzipielle Therapie-Optionen zur Verfügung. Die Entscheidung bezüglich der Therapie und Wahl der Medikamente richtet sich nach dem Vorliegen und der Art der BCR/ABL Mutationen, der Phase der Erkrankung, pharmakologischen Parametern, sowie patienten-bezogenen Faktoren wie Alter und Komorbidität. Der vorliegende Artikel fasst die derzeit als Standard geltenden Strategien zur Diagnostik und Therapie der frisch-diagnostizierten und der imatinib-resistenten CML zusammen, und präsentiert entsprechende Algorithmen, welche in der CML Plattform der Österreichischen Gesellschaft für Hämatologie und Onkologie (ÖGHO) in den Jahren 2007 und 2008 diskutiert und erstellt wurden. Die resultierenden Empfehlungen sollten in der Patientenbetreuung und Therapie, in der Auswahl der optimalen diagnostischen Tests und therapeutischen Verfahren in der klinischen Praxis, sowie in der Planung von klinischen Studien einen hilfreichen Beitrag leisten.

Summary

Chronic myeloid leukemia (CML) is a stem cell disease characterized by the BCR/ABL oncoprotein. The ABL kinase inhibitor imatinib is effective in most patients and considered standard first-line therapy. However, not all patients show a long-lasting response to this drug. In fact, resistance against imatinib has been described and is an emerging clinical problem in CML. For these patients, novel multi-kinase inhibitors such as nilotinib or dasatinib as well as stem cell transplantation, represent alternative treatment options. The decision concerning second-line therapies and selection of drugs is usually based on the presence and type of BCR/ABL mutations, the phase of disease, other disease-related factors as well as patient-related factors including age, co-morbidity, and pharmacologic determinants. The current article provides an overview on diagnostic and therapeutic strategies for patients with treatment-naïve and imatinib-resistant CML, together with proposed algorithms that were discussed and approved by members of the CML platform of the Austrian Society for Hematology and Oncology (ÖGHO) in 2007 and 2008. The resulting recommendations should assist in diagnosis and prognostication in CML, follow-up and disease-monitoring, patient selection for interventional therapies, and in the preparation and conduct of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Nowell PC, Hungerford DA (1960) A minute chromosome in human granulocytic leukemia. Science 132: 1497

    Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293

    Article  PubMed  CAS  Google Scholar 

  • de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300: 765–767

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830

    Article  PubMed  CAS  Google Scholar 

  • Wetzler M, Talpaz M, Van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R (1993) Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J Clin Invest 92: 1925–1939

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Kantarjian H (2003) Advanced-phase chronic myeloid leukemia. Semin Hematol 40: 79–86

    Article  PubMed  Google Scholar 

  • Giles FJ, Cortes JE, Kantarjian HM, O'Brien SM (2004) Accelerated and blastic phases of chronic myelogenous leukemia. Hematol Oncol Clin North Am 18: 753–774

    Article  PubMed  Google Scholar 

  • Cortes JE, Talpaz M, O'Brien S, Faderl S, Garcia-Manero G, Ferrajoli A (2006) Staging of chronic myeloid leukemia in the imatinib era: an evaluation of the World Health Organization proposal. Cancer 106: 1306–1315

    Article  PubMed  CAS  Google Scholar 

  • Goldman JM, Apperley JF, Jones L, Marcus R, Goolden AW, Batchelor R, et al (1986) Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 314: 202–207

    PubMed  CAS  Google Scholar 

  • Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A, et al (1998) Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 352: 1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Silberman, G, Crosse MG, Peterson EA, Weston RC, Horowitz MM, Appelbaum FR, et al (1994) Availability and appropriateness of allogeneic bone marrow transplantation for chronic myeloid leukemia in 10 countries. N Engl J Med 331: 1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8: 935–942

    PubMed  CAS  Google Scholar 

  • Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346: 645–652

    Article  PubMed  CAS  Google Scholar 

  • O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348: 994–1004

    Article  PubMed  Google Scholar 

  • Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349: 1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99: 1928–1937

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99: 3530–3539

    Article  PubMed  CAS  Google Scholar 

  • Barnes DJ, Melo JV, (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5: 2862–2866

    PubMed  CAS  Google Scholar 

  • Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21: 926–935

    PubMed  CAS  Google Scholar 

  • Valent P (2008) Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br J Haematol (in press)

  • Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, Blanchet O, Marit G, Gluckman E, Reiffers J, Gardembas M, Mahon FX (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109: 58–60

    Article  PubMed  CAS  Google Scholar 

  • Darkow T, Henk HJ, Thomas SK, Feng W, Baladi JF, Goldberg GA, Hatfield A, Cortes J (2007) Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. Pharmacoeconomics 25: 481–496

    Article  PubMed  CAS  Google Scholar 

  • Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95: 3498–3505

    PubMed  CAS  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880

    Article  PubMed  CAS  Google Scholar 

  • Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, et al (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99: 3472–3475

    Article  PubMed  CAS  Google Scholar 

  • von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101: 2368–2373

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104: 3739–3745

    Article  PubMed  CAS  Google Scholar 

  • Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlägel U, von Bonin M, et al (2004) P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 18: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Villuendas R, Steegmann JL, Pollán M, Tracey L, Granda A, Fernández-Ruiz E, et al (2006) Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. Leukemia 20: 1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian HM, Talpaz M, Giles F, O'Brien S, Cortes J (2006) New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 145: 913–923

    PubMed  Google Scholar 

  • Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Yokota A, Kimura S, Masuda S, Ashihara E, Kuroda J, Sato K, et al (2007) INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity. Blood 109: 306–314

    Article  PubMed  CAS  Google Scholar 

  • Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A, Ahmed S, Redaelli S, Piazza R, Magistroni V, Andreoni F, Scapozza L, Formelli F, Gambacorti-Passerini C (2006) In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res 66: 11314–11322

    Article  PubMed  CAS  Google Scholar 

  • Martinelli G, Soverini S, Rosti G, Cilloni D, Baccarani M (2005) New tyrosine kinase inhibitors in chronic myeloid leukemia. Haematologica 90: 534–541

    PubMed  CAS  Google Scholar 

  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7: 345–356

    Article  PubMed  CAS  Google Scholar 

  • Quintás-Cardama A, Kantarjian H, Cortes J (2007) Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 6: 834–848

    Article  PubMed  CAS  Google Scholar 

  • Hernández JM, González-Sarmiento R, Martin C, González M, Sánchez I, Corral J, Orfao A, Cañizo MC, San Miguel JF, López-Borrasca A (1991) Immunophenotypic, genomic and clinical characteristics of blast crisis of chronic myelogenous leukaemia. Br J Haematol 79: 408–414

    Article  PubMed  Google Scholar 

  • Haung ML, Ho CH (1998) Diagnostic value of an automatic hematology analyzer in patients with hematologic disorders. Adv Ther 15: 137–141

    PubMed  CAS  Google Scholar 

  • Ducrest S, Meier F, Tschopp C, Pavlovic R, Dahinden CA (2005) Flowcytometric analysis of basophil counts in human blood and inaccuracy of hematology analyzers. Allergy 60: 1446–1450

    Article  PubMed  CAS  Google Scholar 

  • Lesesve JF, Benbih M, Lecompte T (2005) Accurate basophils counting: not an easy goal! Clin Lab Haematol 27: 143–144

    Article  PubMed  Google Scholar 

  • Bühring HJ, Simmons PJ, Pudney M, Müller R, Jarrossay D, van Agthoven A, Willheim M, Brugger W, Valent P, Kanz L (1999) The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 94: 2343–2356

    PubMed  Google Scholar 

  • Agis H, Krauth MT, Böhm A, Mosberger I, Müllauer L, Simonitsch-Klupp I, Walls AF, Horny HP, Valent P (2006) Identification of basogranulin (BB1) as a novel immunohistochemical marker of basophils in normal bone marrow and patients with myeloproliferative disorders. Am J Clin Pathol 125: 273–281

    PubMed  CAS  Google Scholar 

  • Agis H, Krauth MT, Mosberger I, Müllauer L, Simonitsch-Klupp I, Schwartz LB, Printz D, Böhm A, Fritsch G, Horny HP, Valent P (2006) Enumeration and immunohistochemical characterisation of bone marrow basophils in myeloproliferative disorders using the basophil specific monoclonal antibody 2D7. J Clin Pathol 59: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Agis H, Sperr WR, Herndlhofer S, Semper H, Pirc-Danoewinata H, Haas OA, Mannhalter C, Esterbauer H, Geissler K, Sillaber C, Jäger U, Valent P (2007) Clinical and prognostic significance of histamine monitoring in patients with CML during treatment with imatinib (STI571). Ann Oncol 18: 1834–1841

    Article  PubMed  CAS  Google Scholar 

  • Valent P, Agis H, Sperr W, Sillaber C, Horny HP (2008) Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia. Leuk Lymphoma 49: 635–638

    Article  PubMed  CAS  Google Scholar 

  • Buesche G, Ganser A, Schlegelberger B, von Neuhoff N, Gadzicki D, Hecker H, Bock O, Frye B, Kreipe H (2007) Marrow fibrosis and its relevance during imatinib treatment of chronic myeloid leukemia. Leukemia 21: 2420–2427

    Article  PubMed  CAS  Google Scholar 

  • Primo D, Tabernero MD, Rasillo A, Sayagués JM, Espinosa AB, Chillón MC, Garcia-Sanz R, Gutierrez N, Giralt M, Hagemeijer A, San Miguel JF, Orfao A (2003) Patterns of BCR/ABL gene rearrangements by interphase fluorescence in situ hybridization (FISH) in BCR/ABL+ leukemias: incidence and underlying genetic abnormalities. Leukemia 17: 1124–1129

    Article  PubMed  CAS  Google Scholar 

  • Douet-Guilbert N, Morel F, Quemener S, Maguer A, Le Bris MJ, Morice P, Berthou C, De Braekeleer M (2006) Deletion size characterization of der(9) deletions in Philadelphia-positive chronic myeloid leukemia. Cancer Genet Cytogenet 170: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Babicka L, Zemanova Z, Pavlistova L, Brezinova J, Ransdorfova S, Houskova L, Moravcova J, Klamova H, Michalova K (2006) Complex chromosomal rearrangements in patients with chronic myeloid leukemia. Cancer Genet Cytogenet 168: 22–29

    Article  PubMed  CAS  Google Scholar 

  • Krulik M, Smadja N, de Gramont A, Gonzalez-Canali G, Audebert AA, Dray C, Brissaud P, Debray J (1987) Sequential karyotype study on Ph-positive chronic myelocytic leukemia. Significance of additional chromosomal abnormalities during disease evolution. Cancer 60: 974–979

    Article  PubMed  CAS  Google Scholar 

  • Farag SS, Ruppert AS, Mrózek K, Carroll AJ, Pettenati MJ, Le Beau MM, Peterson BL, Powell BL, Ozer H, Silver RT, Larson RA, Bloomfield CD; Cancer and Leukemia Group B study (2004) Prognostic significance of additional cytogenetic abnormalities in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia treated with interferon-alpha: a Cancer and Leukemia Group B study. Int J Oncol 25: 143–151

    PubMed  Google Scholar 

  • Deininger MW, Cortes J, Paquette R, Park B, Hochhaus A, Baccarani M, Stone R, Fischer T, Kantarjian H, Niederwieser D, Gambacorti-Passerini C, So C, Gathmann I, Goldman JM, Smith D, Druker BJ, Guilhot F (2007) The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in philadelphia chromosome-negative cells. Cancer 110: 1509–1519

    Article  PubMed  Google Scholar 

  • Hochhaus A, Weisser A, La Rosée P, Emig M, Müller MC, Saussele S, Reiter A, Kuhn C, Berger U, Hehlmann R, Cross NC (2000) Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 14: 998–1005

    Article  PubMed  CAS  Google Scholar 

  • Müller MC, Gattermann N, Lahaye T, Deininger MW, Berndt A, Fruehauf S, Neubauer A, Fischer T, Hossfeld DK, Schneller F, Krause SW, Nerl C, Sayer HG, Ottmann OG, Waller C, Aulitzky W, le Coutre P, Freund M, Merx K, Paschka P, König H, Kreil S, Berger U, Gschaidmeier H, Hehlmann R, Hochhaus A (2003) Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia 17: 2392–2400

    Article  PubMed  CAS  Google Scholar 

  • Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Douer D, Fabian I, Cline MJ (1983) Circulating pluripotent haemopoietic cells in patients with myeloproliferative disorders. Br J Haematol 54: 373–381

    Article  PubMed  CAS  Google Scholar 

  • Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, Tso CY, Braun TJ, Clarkson BD, Cervantes F (1984) Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood 63: 789–799

    PubMed  CAS  Google Scholar 

  • Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, Alimena G, Steegmann JL, Ansari H (1998) A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 90: 850–858

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian HM, Keating MJ, Smith TL, Talpaz M, McCredie KB (1990) Proposal for a simple synthesis prognostic staging system in chronic myelogenous leukemia. Am J Med 88: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Hasford J, Pfirrmann M, Hehlmann R, Baccarani M, Guilhot F, Mahon FX, Kluin-Nelemans HC, Ohnishi K, Thaler J, Steegmann JL (2003) Prognosis and prognostic factors for patients with chronic myeloid leukemia: Nontransplant therapy. Semin Hematol 40: 4–12

    Article  PubMed  CAS  Google Scholar 

  • Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, Talpaz M, Sawyers CL, Rosamilia M, Ford J, Lloyd P, Capdeville R (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22: 935–942

    Article  PubMed  CAS  Google Scholar 

  • White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, Zannettino A, Lynch K, Manley PW, Hughes T (2007) Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110: 4064–4072

    Article  PubMed  CAS  Google Scholar 

  • Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA, Lassalle R, Marit G, Reiffers J, Begaud B, Moore N, Molimard M, Mahon FX (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109: 3496–3499

    Article  PubMed  CAS  Google Scholar 

  • Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y; IRIS (International Randomized Interferon vs STI571) Study Group (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111: 4022–4028

    Article  PubMed  CAS  Google Scholar 

  • Lange T, Bumm T, Otto S, Al-Ali HK, Kovacs I, Krug D, Köhler T, Krahl R, Niederwieser D, Deininger MW (2004) Quantitative reverse transcription polymerase chain reaction should not replace conventional cytogenetics for monitoring patients with chronic myeloid leukemia during early phase of imatinib therapy. Haematologica 89: 49–57

    PubMed  CAS  Google Scholar 

  • Goldman J (2005) Monitoring minimal residual disease in BCR-ABL-positive chronic myeloid leukemia in the imatinib era. Curr Opin Hematol 12: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Martinelli G, Lacobucci I, Soverini S, Cilloni D, Saglio G, Pane F, Baccarani M (2006) Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol 24: 196–204

    Article  PubMed  CAS  Google Scholar 

  • Branford S, Cross NC, Hochhaus A, Radich J, Saglio G, Kaeda J, Goldman J, Hughes T (2006) Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 20: 1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Munker R, Lowery C, Martin S, Shi R, Veillon DM, Cotelingam JD, Nordberg ML (2007) Comparison of FISH and quantitative RT-PCR for the diagnosis and follow-up of BCR-ABL-positive leukemias. Mol Diagn Ther 11: 239–245

    PubMed  CAS  Google Scholar 

  • Press RD, Galderisi C, Yang R, Rempfer C, Willis SG, Mauro MJ, Druker BJ, Deininger MW (2007) A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res 13: 6136–6143

    Article  PubMed  CAS  Google Scholar 

  • Müller MC, Saglio G, Lin F, Pfeifer H, Press RD, Tubbs RR, Paschka P, Gottardi E, O'Brien SG, Ottmann OG, Stockinger H, Wieczorek L, Merx K, König H, Schwindel U, Hehlmann R, Hochhaus A (2007) An international study to standardize the detection and quantitation of BCR-ABL transcripts from stabilized peripheral blood preparations by quantitative RT-PCR. Haematologica 92: 970–973

    Article  PubMed  Google Scholar 

  • Müller MC, Erben P, Saglio G, Gottardi E, Nyvold CG, Schenk T, Ernst T, Lauber S, Kruth J, Hehlmann R, Hochhaus A; European LeukemiaNet (2008) Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories. Leukemia 22: 96–102

    Article  PubMed  CAS  Google Scholar 

  • Gruber FX, Lamark T, Anonli A, Sovershaev MA, Olsen M, Gedde-Dahl T, Hjort-Hansen H, Skogen B (2005) Selecting and deselecting imatinib-resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL. Leukemia 19: 2159–2165

    Article  PubMed  CAS  Google Scholar 

  • Preuner S, Denk D, Frommlet F, Nesslboeck M, Lion T (2008) Quantitative monitoring of cell clones carrying point mutations in the BCR-ABL tyrosine kinase domain by ligation-dependent polymerase chain reaction (LD-PCR). Leukemia (in press)

  • Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F, Apperley J, Cervantes F, Cortes J, Deininger M, Gratwohl A, Guilhot F, Horowitz M, Hughes T, Kantarjian H, Larson R, Niederwieser D, Silver R, Hehlmann R; European LeukemiaNet (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108: 1809–1820

    Article  PubMed  CAS  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880

    Article  PubMed  CAS  Google Scholar 

  • Roche-Lestienne C, Preudhomme C (2003) Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin Hematol 40(S2): 80–82

    PubMed  CAS  Google Scholar 

  • von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J (2006) Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 108: 1328–1333

    Article  PubMed  CAS  Google Scholar 

  • Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O'Brien S, Zhou X, Luthra R, Garcia-Manero G, Giles F, Rios MB, Verstovsek S, Cortes J (2006) Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 20: 1767–1773

    Article  PubMed  CAS  Google Scholar 

  • O'Hare T, Eide CA, Deininger MW (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110: 2242–2249

    Article  PubMed  CAS  Google Scholar 

  • Goldman JM (2007) How I treat chronic myeloid leukemia in the imatinib era. Blood 110: 2828–2837

    Article  PubMed  CAS  Google Scholar 

  • Jabbour E, Cortes JE, Giles FJ, O'Brien S, Kantarjian HM (2007) Current and emerging treatment options in chronic myeloid leukemia. Cancer 109: 2171–2181

    Article  PubMed  CAS  Google Scholar 

  • Jabbour E, Cortes J, Kantarjian H, Giralt S, Andersson BS, Giles F, Shpall E, Kebriaei P, Champlin R, de Lima M (2007) Novel tyrosine kinase inhibitor therapy before allogeneic stem cell transplantation in patients with chronic myeloid leukemia: no evidence for increased transplant-related toxicity. Cancer 110: 340–344

    Article  PubMed  CAS  Google Scholar 

  • Menzel H, von Bubnoff N, Hochhaus A, Haferlach C, Peschel C, Duyster J (2007) Successful allogeneic stem cell transplantation in second chronic-phase CML induced by the tyrosine kinase inhibitor nilotinib (AMN107) after blast crisis under imatinib. Bone Marrow Transplant 40: 83–84

    Article  PubMed  CAS  Google Scholar 

  • Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL, Sawyers CL (2007) Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest 117: 2562–2569

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O'Brien S, Garcia-Manero G, Giles F, Breeden M, Reeves N, Wierda WG, Jones D (2007) Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110: 4005–4011

    Article  PubMed  CAS  Google Scholar 

  • Baranska M, Lewandowski K, Gniot M, Iwola M, Lewandowska M, Komarnicki M (2008) Dasatinib treatment can overcome imatinib and nilotinib resistance in CML patient carrying F359I mutation of BCR-ABL oncogene. J Appl Genet 49: 201–203

    PubMed  Google Scholar 

  • Soverini S, Colarossi S, Gnani A, Castagnetti F, Rosti G, Bosi C, Paolini S, Rondoni M, Piccaluga PP, Palandri F, Giannoulia P, Marzocchi G, Luatti S, Testoni N, Iacobucci I, Cilloni D, Saglio G, Baccarani M, Martinelli G (2007) Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 92: 401–404

    Article  PubMed  CAS  Google Scholar 

  • O'Hare T, Eide CA, Deininger MW (2008) New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs 17: 865–878

    Article  PubMed  Google Scholar 

  • Abruzzese E, Cantonetti M, Morino L, Orlandi G, Tendas A, Del Principe MI, et al (2003) CNS and cutaneous involvement in patients with chronic myeloid leukemia treated with imatinib in hematologic complete remission: two case reports. J Clin Oncol 21: 4256–4258

    Article  PubMed  CAS  Google Scholar 

  • Bujassoum S, Rifkind J, Lipton JH (2004) Isolated central nervous system relapse in lymphoid blast crisis chronic myeloid leukemia and acute lymphoblastic leukemia in patients on imatinib therapy. Leuk Lymphoma 45: 401–403

    Article  PubMed  Google Scholar 

  • Rytting ME, Wierda WG (2004) Central nervous system relapse in two patients with chronic myelogenous leukemia in myeloid blastic phase on imatinib mesylate therapy. Leuk Lymphoma 45: 1623–1626

    Article  PubMed  Google Scholar 

  • Matsuda M, Morita Y, Shimada T, Miyatake J, Hirase C, Tanaka M, et al (2005) Extramedullary blast crisis derived from 2 different clones in the central nervous system and neck during complete cytogenetic remission of chronic myelogenous leukemia treated with imatinib mesylate. Int J Hematol 81: 307–309

    Article  PubMed  Google Scholar 

  • Kim HJ, Jung CW, Kim K, Ahn JS, Kim WS, Park K, et al (2006) Isolated blast crisis in CNS in a patient with chronic myelogenous leukaemia maintaining major cytogenetic response after imatinib. J Clin Oncol 24: 4028–4029

    Article  PubMed  Google Scholar 

  • Aichberger KJ, Herndlhofer S, Agis H, Sperr WR, Esterbauer H, Rabitsch W, Knöbl P, Haas OA, Thalhammer R, Schwarzinger I, Sillaber C, Jäger U, Valent P (2007) Liposomal cytarabine for treatment of myeloid central nervous system relapse in chronic myeloid leukaemia occurring during imatinib therapy. Eur J Clin Invest 37: 808–813

    Article  PubMed  CAS  Google Scholar 

  • Petzer AL, Gunsilius E, Hayes M, Stockhammer G, Duba HC, Schneller F, et al (2002) Low concentrations of STI571 in the cerebrospinal fluid: a case report. Br J Haematol 117: 623–625

    Article  PubMed  Google Scholar 

  • Takayama N, Sato N, O'Brien SG, Ikeda Y, Okamoto S (2002) Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 119: 106–108

    Article  PubMed  Google Scholar 

  • Wolff NC, Richardson JA, Egorin M, Ilaria RL (2003) The CNS is a sanctuary for leukemic cells in mice receiving imatinib mesylate for Bcr/Abl-induced leukemia. Blood 101: 5010–5013

    Article  PubMed  CAS  Google Scholar 

  • Porkka K, Koskenvesa P, Lundan T, Rimpilainen J, Mustjoki S, Smykla R, Wild R, Luo R, Arnan M, Brethon B, Eccersley L, Hjorth-Hansen H, Hoglund M, Klamova H, Knutsen H, Parikh S, Raffoux E, Gruber F, Brito-Babapulle F, Dombret H, Duarte RF, Elonen E, Paquette R, Zwaan CM, Lee FY (2008) Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood (in press)

  • Andersen MK, Pedersen-Bjergaard J, Kjeldsen L, Dufva IH, Brøndum-Nielsen K (2002) Clonal Ph-negative hematopoiesis in CML after therapy with imatinib mesylate is frequently characterized by trisomy 8. Leukemia 16: 1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Meeus P, Demuynck H, Martiat P, Michaux L, Wouters E, Hagemeijer A (2003) Sustained, clonal karyotype abnormalities in the Philadelphia chromosome negative cells of CML patients successfully treated with Imatinib. Leukemia 17: 465–467

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Kantarjian H, Talpaz M, O'Brien S, Garcia-Manero G, Giles F, Rios MB, Hayes K, Cortes J (2003) Chromosomal abnormalities in Philadelphia chromosome-negative metaphases appearing during imatinib mesylate therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Cancer 98: 1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Bumm T, Müller C, Al-Ali HK, Krohn K, Shepherd P, Schmidt E, Leiblein S, Franke C, Hennig E, Friedrich T, Krahl R, Niederwieser D, Deininger MW (2003) Emergence of clonal cytogenetic abnormalities in Ph-cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101: 1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Terre C, Eclache V, Rousselot P, Imbert M, Charrin C, Gervais C, Mozziconacci MJ, Maarek O, Mossafa H, Auger N, Dastugue N, Talmant P, Van den Akker J, Leonard C, N'Guyen Khac F, Mugneret F, Viguié F, Lafage-Pochitaloff M, Bastie JN, Roux GL, Nicolini F, Maloisel F, Vey N, Laurent G, Recher C, Vigier M, Yacouben Y, Giraudier S, Vernant JP, Salles B, Roussi J, Castaigne S, Leymarie V, Flandrin G, Lessard M; France Intergroupe pour la Leucemie Myeloide Chronique (2004) Report of 34 patients with clonal chromosomal abnormalities in Philadelphia-negative cells during imatinib treatment of Philadelphia-positive chronic myeloid leukemia. Leukemia 18: 1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Bruyère H, Horsman DE, Pantzar T, Barnett MJ, Hogge DE, Nevill TJ, Nantel SH, Sutherland HJ, Toze CL, Shepherd JD, Lavoie JC, Song KW, Smith CA, Forrest DL (2006) Philadelphia-negative clonal hematopoiesis following imatinib therapy in patients with chronic myeloid leukemia: a report of nine cases and analysis of predictive factors. Cancer Genet Cytogenet 170: 16–23

    Article  PubMed  CAS  Google Scholar 

  • Fabarius A, Haferlach C, Müller MC, Erben P, Lahaye T, Giehl M, Frank O, Seifarth W, Hehlmann R, Hochhaus A (2007) Dynamics of cytogenetic aberrations in Philadelphia chromosome positive and negative hematopoiesis during dasatinib therapy of chronic myeloid leukemia patients after imatinib failure. Haematologica 92: 834–837

    Article  PubMed  CAS  Google Scholar 

  • Shah NP, Kantarjian HM, Kim DW, Réa D, Dorlhiac-Llacer PE, Milone JH, Vela-Ojeda J, Silver RT, Khoury HJ, Charbonnier A, Khoroshko N, Paquette RL, Deininger M, Collins RH, Otero I, Hughes T, Bleickardt E, Strauss L, Francis S, Hochhaus A (2008) Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol 26: 3204–3212

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J, Jootar S, Robak T, Khoroshko N, Masszi T, Skotnicki A, Hellmann A, Zaritsky A, Golenkov A, Radich J, Hughes T, Countouriotis A, Shah N (2007) Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood 109: 5143–5150

    Article  PubMed  CAS  Google Scholar 

  • Quintás-Cardama A, Kantarjian H, O'Brien S, Borthakur G, Bruzzi J, Munden R, Cortes J (2007) Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 25: 3908–3914

    Article  PubMed  CAS  Google Scholar 

  • Bergeron A, Réa D, Levy V, Picard C, Meignin V, Tamburini J, Bruzzoni-Giovanelli H, Calvo F, Tazi A, Rousselot P (2007) Lung abnormalities after dasatinib treatment for chronic myeloid leukemia: a case series. Am J Respir Crit Care Med 176: 814–818

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, Tanaka C, Manley P, Rae P, Mietlowski W, Bochinski K, Hochhaus A, Griffin JD, Hoelzer D, Albitar M, Dugan M, Cortes J, Alland L, Ottmann OG (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 354: 2542–2551

    Article  PubMed  Google Scholar 

  • Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O'Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110: 3540–3546

    Article  PubMed  CAS  Google Scholar 

  • Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Köcher T, Superti-Furga G (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110: 4055–4063

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25: 1035–1044

    Article  PubMed  CAS  Google Scholar 

  • O'Hare T, Walters DK, Stoffregen EP, Sherbenou DW, Heinrich MC, Deininger MW, Druker BJ (2005) Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib. Clin Cancer Res 11: 6987–6993

    Article  PubMed  Google Scholar 

  • Weisberg E, Catley L, Wright RD, Moreno D, Banerji L, Ray A, et al (2007) Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood 109: 2112–2120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Valent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valent, P., Lion, T., Wolf, D. et al. Diagnostic algorithms, monitoring, prognostication, and therapy in chronic myeloid leukemia (CML): a proposal of the Austrian CML platform. Wien Klin Wochenschr 120, 697–709 (2008). https://doi.org/10.1007/s00508-008-1100-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-008-1100-8

Keywords

Navigation