Skip to main content
Log in

Robust Stackelberg controllability for the Kuramoto–Sivashinsky equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this article, the robust Stackelberg controllability (RSC) problem is studied for a nonlinear fourth-order parabolic equation, namely the Kuramoto–Sivashinsky equation. When three external sources are acting into the system, the RSC problem consists essentially in combining two subproblems: the first one is a saddle point problem among two sources. Such sources are called the “follower control” and its associated “disturbance signal.” This procedure corresponds to a robust control problem. The second one is a hierarchic control problem (Stackelberg strategy), which involves the third force, so-called leader control. The RSC problem establishes a simultaneous game for these forces in the sense that the leader control has as objective to verify a controllability property, while the follower control and perturbation solve a robust control problem. In this paper, the leader control obeys to the exact controllability to the trajectories. Additionally, iterative algorithms to approximate the robust control problem as well as the robust Stackelberg strategy for the nonlinear Kuramoto–Sivashinsky equation are developed and implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

If the readers are interested in the numerical codes, they can be download from: http://cmontoya.mat.utfsm.cl/paper/Codes-KS-RSC.zip.

References

  1. Akrivis GD (1992) Finite difference discretization of the Kuramoto-Sivashinsky equation. Numer Math 63(1):1–11. https://doi.org/10.1007/BF01385844

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis GD (1994) Finite element discretization of the Kuramoto–Sivashinsky equation. Banach Center Publ 29:155–163

    Article  MathSciNet  Google Scholar 

  3. Allaire G (2007) Numerical analysis and optimization. Numerical mathematics and scientific computation. An introduction to mathematical modelling and numerical simulation (translated from the French by Alan Craig). Oxford University Press, Oxford

  4. Anders D, Dittmann M, Weinberg K (2012) A higher-order finite element approach to the Kuramoto–Sivashinsky equation. ZAMM Z Angew Math Mech 92(8):599–607. https://doi.org/10.1002/zamm.201200017

    Article  MathSciNet  MATH  Google Scholar 

  5. Barker B, Johnson MA, Noble P, Rodrigues LM, Zumbrun K (2013) Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation. Phys D Nonlinear Phenom 258:11–46. https://doi.org/10.1016/j.physd.2013.04.011

    Article  MathSciNet  MATH  Google Scholar 

  6. Bewley TR, Temam R, Ziane M (2000) A general framework for robust control in fluid mechanics. Phys D Nonlinear Phenom 138(3–4):360–392. https://doi.org/10.1016/S0167-2789(99)00206-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Carreño N, Santos MC (2019) Stackelberg–Nash exact controllability for the Kuramoto–Sivashinsky equation. J Differ Equ 266(9):6068–6108. https://doi.org/10.1016/j.jde.2018.10.043

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerpa E, Mercado A (2011) Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation. J Differ Equ 250(4):2024–2044. https://doi.org/10.1016/j.jde.2010.12.015

    Article  MathSciNet  MATH  Google Scholar 

  9. Cerpa E, Mercado A, Pazoto AF (2015) Null controllability of the stabilized Kuramoto–Sivashinsky system with one distributed control. SIAM J Control Optim 53(3):1543–1568. https://doi.org/10.1137/130947969

    Article  MathSciNet  MATH  Google Scholar 

  10. Christofides P, Chow J (2002) Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes

  11. Doss LJT, Nandini AP (2019) A fourth-order \(H^1\)-Galerkin mixed finite element method for Kuramoto–Sivashinsky equation. Numer Methods Partial Differ Equ 35(2):445–477. https://doi.org/10.1002/num.22306

    Article  MATH  Google Scholar 

  12. Dragan V, Morozan T, Stoica AM (2006) Mathematical methods in robust control of linear stochastic systems, vol 50. Springer, Berlin

    MATH  Google Scholar 

  13. Drazin PG, Johnson RS (1989) Solitons: an introduction. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139172059

    Book  Google Scholar 

  14. Dullerud GE, Paganini F (2013) A course in robust control theory: a convex approach, vol 36. Springer, Berlin

    MATH  Google Scholar 

  15. Ekeland I, Temam R (1976) Convex analysis and variational problems (translated from the French, Studies in mathematics and its applications, vol 1). North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., Inc., New York

  16. Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations. Lecture notes series, vol 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul

    MATH  Google Scholar 

  17. Glowinski R, Lions JL, He J (2008) Exact and approximate controllability for distributed parameter systems: a numerical approach. In: Encyclopedia of mathematics and its applications, vol 117. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511721595

  18. Green M, Limebeer DJ (2012) Linear robust control. Courier Corporation

  19. Hamilton RS (1982) The inverse function theorem of Nash and Moser. Bull Am Math Soc (NS) 7(1):65–222. https://doi.org/10.1090/S0273-0979-1982-15004-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Hernández-Santamaría V, Peralta L (2020) Some remarks on the robust Stackelberg controllability for the heat equation with controls on the boundary. Discret Contin Dyn Syst Ser B 25(1):161–190. https://doi.org/10.3934/dcdsb.2019177

    Article  MathSciNet  MATH  Google Scholar 

  21. Hernández-Santamaría V, de Teresa L (2018) Robust Stackelberg controllability for linear and semilinear heat equations. Evol Equ Control Theory 7(2):247–273. https://doi.org/10.3934/eect.2018012

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu C, Temam R (2001) Robust boundary control for the Kuramoto–Sivashinsky equation. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 353–362

  23. Hu C, Temam R (2001) Robust control of the Kuramoto–Sivashinsky equation. Dyn Contin Discret Impuls Syst Ser B Appl Algorithms 8(3):315–338

    MathSciNet  MATH  Google Scholar 

  24. Kuramoto Y, Tsuzuki T (1975) On the formation of dissipative structures in reaction-diffusion systems: reductive perturbation approach. Prog Theor Phys 54(3):687–699

    Article  Google Scholar 

  25. Kuramoto Y, Tsuzuki T (1976) Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog Theor Phys 55(2):356–369

    Article  Google Scholar 

  26. Lakestani M, Dehghan M (2012) Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl Math Model 36(2):605–617. https://doi.org/10.1016/j.apm.2011.07.028

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou Y, Christofides PD (2003) Optimal actuator/sensor placement for nonlinear control of the Kuramoto–Sivashinsky equation. IEEE Trans Control Syst Technol 11(5):737–745

    Article  Google Scholar 

  28. Lucquin B, Pironneau O (1998) Introduction to scientific computing (translated from the French by Michel Kern). Wiley, Chichester

    MATH  Google Scholar 

  29. Michelson DM, Sivashinsky GI (1977) Nonlinear analysis of hydrodynamic instability in laminar flames. II. Numerical experiments. Acta Astronaut 4(11–12):1207–1221. https://doi.org/10.1016/0094-5765(77)90097-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohanty RK, Kaur D (2017) Numerov type variable mesh approximations for 1D unsteady quasi-linear biharmonic problem: application to Kuramoto–Sivashinsky equation. Numer Algorithms 74(2):427–459. https://doi.org/10.1007/s11075-016-0154-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohanty RK, Kaur D (2019) High accuracy two-level implicit compact difference scheme for 1D unsteady biharmonic problem of first kind: application to the generalized Kuramoto–Sivashinsky equation. J Differ Equ Appl 25(2):243–261. https://doi.org/10.1080/10236198.2019.1568423

    Article  MathSciNet  MATH  Google Scholar 

  32. Montoya C, de Teresa L (2018) Robust Stackelberg controllability for the Navier–Stokes equations. NoDEA Nonlinear Differ Equ Appl. https://doi.org/10.1007/s00030-018-0537-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Purwins HG, Bödeker H, Amiranashvili S (2010) Dissipative solitons. Adv Phys 59(5):485–701

    Article  Google Scholar 

  34. Sakthivel R, Ito H (2007) Non-linear robust boundary control of the Kuramoto–Sivashinsky equation. IMA J Math Control Inform 24(1):47–55. https://doi.org/10.1093/imamci/dnl009

    Article  MathSciNet  MATH  Google Scholar 

  35. Singh BK, Arora G, Kumar P (2016) A note on solving the fourth-order Kuramoto–Sivashinsky equation by the compact finite difference scheme. Ain Shams Eng J 9:1581–1589

    Article  Google Scholar 

  36. Sivashinsky GI (1977) Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations. Acta Astronaut 4(11–12):1177–1206. https://doi.org/10.1016/0094-5765(77)90096-0

    Article  MathSciNet  MATH  Google Scholar 

  37. Stackelberg HV et al (1952) Theory of the market economy

  38. Tachim Medjo T (2001/02) Iterative methods for a class of robust control problems in fluid mechanics. SIAM J Numer Anal 39(5):1625–1647. https://doi.org/10.1137/S0036142900381679

  39. Von Stackelberg H (2010) Market structure and equilibrium. Springer, Berlin

    MATH  Google Scholar 

  40. Xu Y, Shu CW (2006) Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput Methods Appl Mech. Eng 195(25–28):3430–3447. https://doi.org/10.1016/j.cma.2005.06.021

    Article  MathSciNet  MATH  Google Scholar 

  41. Yanez J, Kuznetsov M (2016) An analysis of flame instabilities for hydrogen-air mixtures based on Sivashinsky equation. Phys Lett A 380(33):2549–2560

    Article  Google Scholar 

  42. Zhou Z (2012) Observability estimate and null controllability for one-dimensional fourth order parabolic equation. Taiwan J Math 16(6):1991–2017. https://doi.org/10.11650/twjm/1500406835

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Louis Breton is supported by the National Council of Science and Technology of Mexico Grant No. 624497, and Cristhian Montoya is supported by the Fondecyt Postdoctoral Grant No. 3180100 and ANID-Basal Project FB008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristhian Montoya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

In this appendix, we mention the well-posedness results we used in this paper for both linearized and nonlinear equations. First, in order to consider external sources with lower regularity in space, we define solution by transposition for the linearized KS equation. Let us define

$$\begin{aligned}{\mathcal {Z}}:=C([0,T];H_0^2(0,1))\cap L^2(0,T;H^4(0,1))\cap L^\infty (0,T;W^{1,\infty }(0,1)).\end{aligned}$$

Hence, let \(\overline{y}_0\in H_0^2(0,1)\) and let \(\overline{y}\in {\mathcal {Z}}\) be a solution of the KS equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \overline{y}_{t}+\overline{y}_{xxxx}+\overline{y}_{xx}+\overline{y}\overline{y}_x =0 &{} \text {in }Q,\\ \overline{y}(0,t)=\overline{y}(1,t)=\overline{y}_{x}(0,t)=\overline{y}_{x}(1,t)=0 &{} \text {on }(0,T),\\ \overline{y}(\cdot ,0)=\overline{y}_0&{} \text {in }(0,1). \end{array}\right. } \end{aligned}$$
(A.1)

First, we consider the following linearized system:

$$\begin{aligned} {\left\{ \begin{array}{ll} y_{t}+y_{xxxx}+y_{xx}+\overline{y}y_x+\overline{y}_{x}y =f &{} \text {in }Q,\\ y(0,t)=y(1,t)=y_{x}(0,t)=y_{x}(1,t)=0 &{} \text {on }(0,T),\\ y(\cdot ,0)=y_0&{} \text {in }(0,1). \end{array}\right. } \end{aligned}$$
(A.2)

Now, from [8, Section 2] we have the following definition.

Definition 1

Let \(y_0\in H^{-2}_0(0,1)\) and \(f\in L^1(0,T;W^{-1,1}(0,1))\). A solution of the system (A.2) is a solution \(y\in L^2(Q)\) such that for any \(g\in L^2(Q)\),

$$\begin{aligned} \iint \limits _{Q}y(x,t)g(x,t)\hbox {d}x\mathbf{d} t= & {} \langle y_0,w(0,\cdot )\rangle _{H^{-2}(0,1),H^2(0,1)} \nonumber \\&+\langle f,w\rangle _{L^1(0,T;W^{-1,1}(0,1)), L^\infty (0,T;W^{1,\infty }(0,1))}, \end{aligned}$$
(A.3)

where \(w=w(x,t)\in {\mathcal {Z}}\) is the solution to

$$\begin{aligned} {\left\{ \begin{array}{ll} -w_{t}+w_{xxxx}+w_{xx}-\overline{y}w_x=g &{} \text {in }Q,\\ w(0,t)=w(1,t)=w_{x}(0,t)=w_{x}(1,t)=0 &{} \text {on }(0,T),\\ w(\cdot ,T)=0&{} \text {in }(0,1). \end{array}\right. } \end{aligned}$$
(A.4)

Lemma 6

Assume \(\overline{y}\in {\mathcal {Z}}\). Then, for any \(y_0\in H^{-2}_0(0,1)\) and \(f\in L^1(0,T;W^{-1,1}(0,1))\), the linearized system (A.2) admits a unique solution \(y\in C([0,T];H^{-2}(0,1))\cap L^2(0,T;L^2(0,1))\).

Remark 7

Note that both the regularity for the solution w of (A.4) and an exhaustive proof of Lemma 6 can be obtained in an easy way from [8, Proposition 2.1] and [22]. Due to that, we have omitted those details here.

The following lemma shows regularity results for (A.2) by considering data \((f,y_0)\) belong to more regular spaces like \(L^2(Q)\times L^2(0,1)\) and \(L^2(Q)\times H^2_0(0,1)\). We invite to the reader to review [7, Appendix A], [8, Proposition 2.1] and [22], for more details.

Lemma 7

Assume \(\overline{y}\in {\mathcal {Z}}\).

  1. (a)

    For any \(y_0\in L^{2}(0,1)\) and \(f\in L^2(Q)\), the linearized system (A.2) admits a unique solution \(y\in C([0,T];L^2(0,1))\cap L^2(0,T;H^2(0,1))\) with \(y_t\in L^2(0,T;H^{-2}(0,1))\). Moreover, there exists a positive constant such that

    $$\begin{aligned} \Vert y\Vert _{C([0,T];L^2(0,1))\cap L^2(0,T;H^2(0,1))}\le C\Bigl (\Vert f\Vert _{L^2(Q)}+\Vert y_0\Vert _{L^{2}_0(0,1)}\Bigr ). \end{aligned}$$
    (A.5)

    Furthermore, if there is a constant \(R>0\) such that \(\Vert \overline{y}\Vert _{L^\infty (0,T;W^{1,\infty }(0,1))} \le R\), then the constant C only depends on R and T.

  2. (b)

    For \((y_0,f)\in H_0^{2}(0,1)\times L^2(Q)\), the linearized system (A.2) admits a unique solution y in \(C([0,T];H_0^2(0,1))\cap L^2(0,T;H^4(0,1))\). Moreover, there exists a positive constant such that

    $$\begin{aligned} \Vert y\Vert _{C([0,T];H_0^2(0,1))\cap L^2(0,T;H^4(0,1))}\le C\Bigl (\Vert f\Vert _{L^2(Q)}+\Vert y_0\Vert _{H^{2}_0(0,1)}\Bigr ), \end{aligned}$$
    (A.6)

    Furthermore, if there is a constant \(R>0\) such that \(\Vert \overline{y}\Vert _{L^\infty (0,T;W^{1,\infty }(0,1))} \le R\), then the constant C only depends on R and T.

Now, we mention a result for coupled fourth-order system. Its proof is found in [7, Appendix A]. Let us consider the system:

$$\begin{aligned} {\left\{ \begin{array}{ll} y_{t}+y_{xxxx}+y_{xx}+\overline{y}y_x+\overline{y}_xy= g_1+ -\mu ^{-2}z &{} \text {in }Q,\\ -z_{t}+z_{xxxx}+z_{xx}-(y+\overline{y})z_{x}=g_2&{} \text {in }Q,\\ y(0,t)=y(1,t)=z(0,t)=z(1,t)=0 &{} \text {on }(0,T),\\ y_{x}(0,t)=y_{x}(1,t)=z_{x}(0,t)=z_{x}(1,t)=0 &{} \text {on }(0,T),\\ y(\cdot ,0)=y_{0}(\cdot ),\,\, z(\cdot ,T)=0&{} \text {in }(0,1). \end{array}\right. } \end{aligned}$$
(A.7)

Lemma 8

Assume that \(\overline{y}\in L^\infty (Q)\). Then, there exists \(\mu _0>0\) such that for every \(\mu \ge \mu _0\), any \(g_1,g_2\in L^2(Q)\) and any \(y_0\in L^2(0,1)\), (yz) is the unique solution of (A.7) in the space

$$\begin{aligned}(y,z)\in (L^\infty (0,T;L^{2}(0,1))\cap L^2(0,T;H^2(0,1)))^2.\end{aligned}$$

The next step in this appendix corresponds to the nonlinear problem

$$\begin{aligned} {\left\{ \begin{array}{ll} y_{t}+y_{xxxx}+y_{xx}+\overline{y}y_x+\overline{y}_{x}y+yy_x =f &{} \text {in }Q,\\ y(0,t)=y(1,t)=y_{x}(0,t)=y_{x}(1,t)=0 &{} \text {on }(0,T),\\ y(\cdot ,0)=y_0&{} \text {in }(0,1). \end{array}\right. } \end{aligned}$$
(A.8)

Lemma 9

  1. (a)

    Assume \(\overline{y}\in L^\infty (0,T;W^{1,\infty }(0,1))\). There exists \(\delta >0\) such that for any \((f,y_0)\in L^2(Q)\times L^2(0,1)\) satisfying

    $$\begin{aligned}\Vert y_0\Vert _{L^2(0,1)}+\Vert f\Vert _{L^2(Q)}\le \delta \end{aligned}$$

    problem (A.8) has a unique solution in \(C([0,T];L^2(0,1))\cap L^2(0,T;H^2(0,1))\).

  2. (b)

    Let \(\overline{y}=0\) in (A.8). There exists \(\delta >0\) such that for any \((f,y_0)\in L^2(Q)\times H_0^2(0,1)\) satisfying

    $$\begin{aligned}\Vert y_0\Vert _{H_0^2(0,1)}+\Vert f\Vert _{L^2(Q)}\le \delta \end{aligned}$$

    problem (A.8) has a unique solution in \(C([0,T];H_0^2(0,1))\cap L^2(0,T;H^4(0,1))\).

    Moreover, there exists a positive constant C depending only on T such that

    $$\begin{aligned} \Vert y\Vert _{C([0,T];H_0^2(0,1))\cap L^2(0,T;H^4(0,1))}\le C\Bigl (\Vert f\Vert _{L^2(Q)}+\Vert y_0\Vert _{H^{2}_0(0,1)}\Bigr ). \end{aligned}$$
    (A.9)

Remark 8

Although in [7, Theorem A.4] the authors have proved the first part of the above result by considering \(f\in L^1(0,T;L^2(0,1))\) instead of \(f\in L^2(0,T;L^2(0,1))\), their arguments can be easily adapted for proving this part of Lemma 9. The second part can be obtained from [22]. For this reason, we have omitted the proof of Lemma 9.

Remark 9

Observe that, from Lemma 9, part b), and the fact that \(H_0^2(0,1)\) embeds continuously into \(W^{1,\infty }(0,1)\), it follows that \(y\in L^\infty (0,T;W^{1,\infty }(0,1))\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breton, L., Montoya, C. Robust Stackelberg controllability for the Kuramoto–Sivashinsky equation. Math. Control Signals Syst. 34, 515–558 (2022). https://doi.org/10.1007/s00498-022-00316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-022-00316-3

Keywords

Navigation