Skip to main content
Log in

Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We propose a class of locally Lipschitz functions with piecewise structure for use as Lyapunov functions for hybrid dynamical systems. Subject to some regularity of the dynamics, we show that Lyapunov inequalities can be checked only on a dense set and thus we avoid checking them at points of nondifferentiability of the Lyapunov function. Connections to other classes of locally Lipschitz or piecewise regular functions are also discussed, and applications to hybrid dynamical systems are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In [12], interval-splitting sets with the additional property (11) are used to construct locally Lipschitz functions for which the steepest descent/subdifferential flow generated by the Clarke subdifferential has the pathological behavior of generating strictly increasing orbits.

References

  1. Aubin J-P, Cellina A (1984) Differential Inclusion. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  2. Bacciotti A, Ceragioli FM (1999) Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions. ESAIM Control Optim Calc Var 4:361–376

    Article  MathSciNet  Google Scholar 

  3. Baier R, Grüne L, Hafstein SF (2012) Linear programming based Lyapunov function computation for differential inclusions. Discrete Contin Dyn Syst B 17:33

    Article  MathSciNet  Google Scholar 

  4. Beker O, Hollot CV, Chait Y (2001) Plant with integrator: an example of reset control overcoming limitations of linear feedback. IEEE Trans Autom Control 46:1797–1799

    Article  MathSciNet  Google Scholar 

  5. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics, vol 15. SIAM, Philadelphia, PA

    Book  Google Scholar 

  6. Ceragioli FM (2000) Discontinuous ordinary differential equations and stabilization. PhD thesis, Univ. Firenze, Italy. Available online: http://porto.polito.it/2664870/

  7. Chaney RW (1990) Piecewise \({\cal{C}}^k\) functions in nonsmooth analysis. Nonlinear Anal Theory Methods Appl 15(7):649–660

    Article  Google Scholar 

  8. Clarke FH (1990) Optimization and nonsmooth analysis. Classics in applied mathematics. SIAM, New Delhi

    Book  Google Scholar 

  9. Clarke FH, Ledyaev YS, Stern RJ (1998) Asymptotic stability and smooth Lyapunov functions. J Differ Equ 149(1):69–114

    Article  MathSciNet  Google Scholar 

  10. Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (1998) Nonsmooth analysis and control theory. Graduate texts in mathematics, vol 178. Springer-Verlag, New York

    Google Scholar 

  11. Cortes J (2008) Discontinuous dynamical systems. IEEE Control Syst Mag 28(3):36–73

    Article  MathSciNet  Google Scholar 

  12. Daniilidis A, Drusvyatskiy D (2020) Pathological subgradient dynamics. SIAM J Optim 30(2):1327–1338

    Article  MathSciNet  Google Scholar 

  13. Dayawansa WP, Martin CF (1999) A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans Autom Control 44(4):751–760

    Article  MathSciNet  Google Scholar 

  14. Deimling K (1992) Multivalued differential equations. De Gruyter series in nonlinear analysis and applications. De Gruyter, Berlin

    Google Scholar 

  15. Della Rossa M, Goebel R, Tanwani A, Zaccarian L (2019) Almost everywhere conditions for hybrid Lipschitz Lyapunov functions. In: Proceedings of the 58th IEEE Conference on Decision and Control, pp 8148–8153

  16. Della Rossa M, Tanwani A, Zaccarian L (2020) Max-min Lyapunov functions for switched systems and related differential inclusions. Automatica 120:109–123

    Article  MathSciNet  Google Scholar 

  17. Filippov AF (1988) Differential equations with discontinuous right-hand side. Kluwer Academic Publisher, New York

    Book  Google Scholar 

  18. Goebel R, Hu T, Teel AR (2006) Dual matrix inequalities in stability and performance analysis of linear differential/difference inclusions. In: Menini L, Zaccarian L, Abdallah CT (eds) Current trends in nonlinear systems and control. Birkhäuser, Boston, MA, pp 103–122. https://doi.org/10.1007/0-8176-4470-9_6

    Chapter  Google Scholar 

  19. Goebel R, Sanfelice RG, Teel AR (2012) Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press, Princeton

    Book  Google Scholar 

  20. Goebel R, Teel AR, Hu T, Lin Z (2006) Conjugate convex Lyapunov functions for dual linear differential inclusions. IEEE Trans Autom Control 51(4):661–666

    Article  MathSciNet  Google Scholar 

  21. Goebel R, Teel AR (2010) Preasymptotic stability and homogeneous approximations of hybrid dynamical systems. SIAM Rev 52(1):87–109

    Article  MathSciNet  Google Scholar 

  22. Grzanek M, Michalak A, Rogowski A (2008) A nonsmooth Lyapunov function and stability for ODE’s of Caratheodory type. Nonlinear Anal Theory Methods Appl 69:337–342

    Article  MathSciNet  Google Scholar 

  23. Li Y, Lin Z, Li N (2017) Stability and performance analysis of saturated systems using an enhanced max quadratic Lyapunov function. In: Proceedings of the 20th IFAC World Congress, pp 11847–11852

  24. Liberzon D, Nešić D, Teel AR (2014) Lyapunov-based small-gain theorems for hybrid systems. IEEE Trans Autom Control 59(6):1395–1410

    Article  MathSciNet  Google Scholar 

  25. Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160

    Article  MathSciNet  Google Scholar 

  26. Molchanov AP, Pyatnitskiy YS (1989) Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Syst Control Lett 13(1):59–64

    Article  MathSciNet  Google Scholar 

  27. Nešić D, Teel AR, Zaccarian L (2011) Stability and performance of SISO control systems with first-order reset elements. IEEE Trans Autom Control 56:2567–2582

    Article  MathSciNet  Google Scholar 

  28. Nešić D, Zaccarian L, Teel AR (2008) Stability properties of reset systems. Automatica 44:2019–2026

    Article  MathSciNet  Google Scholar 

  29. Prieur C, Queinnec I, Tarbouriech S, Zaccarian L (2018) Analysis and synthesis of reset control systems. Found Trends Syst Control 6:117–338

    Article  Google Scholar 

  30. Rockafellar RT (1981) Favorable classes of Lipschitz continuous functions in subgradient optimization. IIASA working paper, IIASA, Laxenburg, Austria

  31. Rockafellar RT, Wets RJB (1998) Variational Analysis, volume 317 of Gundlehren der mathematischen Wissenchaften. Springer-Verlag, Berlin, 3rd printing, 2009 edition

  32. Rudin W (1983) Well-distributed measurable sets. Am Mathem Mon 90(1):41–42

    Article  MathSciNet  Google Scholar 

  33. Scholtes S (2012) Introduction to piecewise differentiable equations. Springer Briefs in Optimization. Springer-Verlag, New York

    Book  Google Scholar 

  34. Shevitz D, Paden B (1994) Lyapunov stability theory of nonsmooth systems. IEEE Trans Autom Control 39(9):1910–1914

    Article  MathSciNet  Google Scholar 

  35. Smirnov GV (2002) Introduction to the theory of differential inclusions. American Mathematical Society, USA

    MATH  Google Scholar 

  36. Teel AR, Praly L (2000) On assigning the derivative of a disturbance attenuation control Lyapunov function. Mathem Controls Signals Syst 13:95–124

    Article  MathSciNet  Google Scholar 

  37. Teel AR, Praly L (2000) A smooth Lyapunov function from a class-\({\cal{K}}{\cal{L}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim Calc Var 5:313–367

    Article  MathSciNet  Google Scholar 

  38. Tuna SE, Teel AR (2006) Homogeneous hybrid systems and a converse Lyapunov theorem. In: Proceedings of the 45th IEEE conference on decision and control, pp 6235–6240

  39. Xu J, van den Boom TJJ, De Schutter B, Wang S (2016) Irredundant lattice representations of continuous piecewise affine functions. Automatica 70:109–120

    Article  MathSciNet  Google Scholar 

  40. Zaccarian L, Nešić D, Teel AR (2005) First order reset elements and the Clegg integrator revisited. In: Proceedings of the american control conference, 2005, vol 1, pp 563–568

  41. Zaccarian L, Nešić D, Teel AR (2011) Analytical and numerical Lyapunov functions for SISO linear control systems with first-order reset elements. Int J Robust Nonlinear Control 21(10):1134–1158

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Della Rossa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported in part by ANR via grant HANDY (number ANR-18-CE40-0010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Rossa, M., Goebel, R., Tanwani, A. et al. Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid systems. Math. Control Signals Syst. 33, 123–149 (2021). https://doi.org/10.1007/s00498-020-00273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00273-9

Keywords

Navigation