Skip to main content
Log in

Global stability of a class of difference equations on solvable Lie algebras

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Motivated by the ubiquitous sampled-data setup in applied control, we examine the stability of a class of difference equations that arises by sampling a right- or left-invariant flow on a solvable matrix Lie group. The map defining such a difference equation has three key properties that facilitate our analysis: (1) its Lie series expansion enjoys a type of strong convergence; (2) the origin is an equilibrium; (3) the algebraic ideals enumerated in the lower central series of the Lie algebra are dynamically invariant. We show that certain global stability properties are implied by stability of the Jacobian linearization of the dynamics at the origin, in particular, global asymptotic stability. If the Lie algebra is nilpotent, then the origin enjoys semiglobal exponential stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A detailed treatment of this decomposition can be found in, for example, [13, §4] or [14, §3.14].

  2. Using the convention \(B_1 = \frac{1}{2}\).

  3. This is the case, for example, with the driftless kinematics of a rigid body with velocity inputs: \({A(t,u) = \sum _{i = 1}^mB_iu_i}\), \(B_i \in \mathfrak {g}\).

  4. If \(\mathfrak {h}\subseteq \mathfrak {g}\) is a nilpotent ideal such that \(\mathfrak {h}\supseteq [\mathfrak {g},\mathfrak {g}]\), then for all \(i \ge 2\), \(\mathfrak {h}^{(i)} \subseteq [\mathfrak {g},\mathfrak {g}]^{(i)}\).

  5. In [27], a proof is provided in the context of graded algebras, but this additional structure is not used.

  6. It is merely a coincidence that the contradiction here is the main result we are attempting to prove.

References

  1. Dörfler F, Bullo F (2014) Synchronization in complex networks of phase oscillators. Automatica 50(6):1539. https://doi.org/10.1016/j.automatica.2014.04.012

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonard NE (1997) Stability of a bottom-heavy underwater vehicle. Automatica 33(3):331. https://doi.org/10.1016/S0005-1098(96)00176-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee T, Leok M, McClamroch NH (2010) In: IEEE conference on decision and control. Atlanta, GA pp 5420–5425. https://doi.org/10.1109/CDC.2010.5717652

  4. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot Modeling and Control. Wiley, Hoboken

    Google Scholar 

  5. Bonnard B (1984) Controlabilite de Systemes Mecaniques Sur Les Groupes de Lie. SIAM J Control Optim 22(5):711. https://doi.org/10.1137/0322045

    Article  MathSciNet  MATH  Google Scholar 

  6. Crouch PE (1984) Solvable approximations to control systems. SIAM J Control Optim 22(1):40. https://doi.org/10.1137/0322004

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin J, Green A, Gans N (2014) In: International conference on intelligent robots and systems. Chicago, IL, pp 1533–1539. https://doi.org/10.1109/IROS.2014.6942759

  8. Petersen I, Dong D (2010) Quantum control theory and applications: a survey. IET Control Theory Appl 4(12):2651. https://doi.org/10.1049/iet-cta.2009.0508

    Article  MathSciNet  Google Scholar 

  9. Willsky AS, Marcus SI (1976) Analysis of bilinear noise models in circuits and devices. J Frankl Inst 301(1–2):103. https://doi.org/10.1016/0016-0032(76)90135-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Meisters GH (1996) In: Hong Kong conference on algebra & geometry in complex analysis. Hong Kong. https://www.math.unl.edu/~gmeisters1/papers/HK1996.pdf

  11. Cima A, Gasull A, Mañosas F (1999) The discrete Markus–Yamabe problem. Nonlinear Anal: Theory Methods Appl 35(3):343. https://doi.org/10.1016/S0362-546X(97)00715-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  13. Gorbatsevich VV, Onishchik AL, Vinberg EB (1994) Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras. Springer, Berlin

    MATH  Google Scholar 

  14. Varadarajan VS (1984) Lie Groups, Lie Algebras, and Their Representations. Graduate Texts in Mathematics, vol 102. Springer, New York. https://doi.org/10.1007/978-1-4612-1126-6

    Book  Google Scholar 

  15. Struemper HK (1997) Motion Control for Nonholonomic Systems on Matrix Lie. Ph.D. University of Maryland, Maryland

    Google Scholar 

  16. Struemper HK (1998) In: IEEE conference on decision and control. IEEE 4:4188–4193 https://doi.org/10.1109/CDC.1998.761959

  17. Murray RM, Sastry SS (1991) In: Proceedings of the IEEE conference on decision and control. Brighton, England, pp 1121–1126. https://doi.org/10.1109/CDC.1991.261508

  18. Blanes S, Casas F, Oteo J, Ros J (2009) The Magnus expansion and some of its applications. Phys Rep 470(5–6):151. https://doi.org/10.1016/j.physrep.2008.11.001

    Article  MathSciNet  Google Scholar 

  19. Corwin L, Greenleaf F (2004) Representations of nilpotent Lie groups and their applications: Volume 1, Part 1, basic theory and examples. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge

  20. Wonham WM (1979) Linear multivariable control: a geometric approach. Springer, New York. https://doi.org/10.1007/978-1-4684-0068-7

  21. Desoer CA, Vidyasagar M (1975) Feedback Systems: Input–Output Properties. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-212050-3.X5001-4

    Book  MATH  Google Scholar 

  22. Böttcher A, Wenzel D (2008) The Frobenius norm and the commutator. Linear Algebra Appl 429(8–9):1864. https://doi.org/10.1016/j.laa.2008.05.020

    Article  MathSciNet  MATH  Google Scholar 

  23. Magnus W (1953) Algebraic aspects in the theory of systems of linear differential equations. https://archive.org/details/algebraicaspects00magn

  24. Day J, So W, Thompson RC (1991) Some properties of the Campbell Baker Hausdorff series. Linear Multilinear Algebra 29(3–4):207. https://doi.org/10.1080/03081089108818072

    Article  MathSciNet  MATH  Google Scholar 

  25. Blanes S, Casas F (2004) On the convergence and optimization of the Baker–Campbell–Hausdorff formula. Linear Algebra Appl 378(1–3):135. https://doi.org/10.1016/j.laa.2003.09.010

    Article  MathSciNet  MATH  Google Scholar 

  26. McCarthy PJ, Nielsen C (to appear) Global Synchronization of Sampled-Data Invariant Systems on Exponential Lie Groups. IEEE Trans Control Netw Syst. https://doi.org/10.1109/TCNS.2019.2963019

  27. MacLane S, Birkhoff G (1999) Algebra, 3rd edn. American Mathematical Society, Providence

    MATH  Google Scholar 

  28. Loría A, Panteley E (2005) Advanced topics in control systems theory. Springer, London, pp 23–64

    Book  Google Scholar 

  29. LaSalle JP (1986) The Stability and control of discrete processes. Applied mathematical sciences. Springer, New York. https://doi.org/10.1007/978-1-4612-1076-4

    Book  MATH  Google Scholar 

  30. McCarthy PJ, Nielsen C (2018) American Control Conference. Milwaukee, WI, pp 6055–6060. https://doi.org/10.23919/ACC.2018.8431108

  31. McCarthy PJ, Nielsen C (2017) Proceedings of the American control conference, Seattle, WA, pp 3914–3919. https://doi.org/10.23919/ACC.2017.7963554

  32. Hall BC (2015) Lie Groups, Lie Algebras, and Representations. Graduate Texts in Mathematics, vol 222, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-13467-3

  33. Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip James McCarthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially funded by the Ontario Graduate Scholarship (OGS) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix

Appendix

1.1 Proof of Claim 1

Proof (Claim 1)

Fix the word length \(\ell \ge 2\) and the number of letters in \(\widetilde{X}\), \(1 \le q \le \ell \). There are \(n^q\) choices of letters in \(\widetilde{X}\), \(r^{\ell - q}\) choices of letters in \(\widetilde{W}\), and \(\left( {\begin{array}{c}\ell \\ q\end{array}}\right) \) ways to position the letters in \(\widetilde{X}\). Thus, there are \(\left( {\begin{array}{c}\ell \\ q\end{array}}\right) n^qr^{\ell - q}\) words of length \(\ell \) with q letters in \(\widetilde{X}\). First, recall from (14), that \(u_i := \sum _{|\omega | \le i}c_\omega \otimes (P_i\bar{\omega }_{i - 1})\). Applying (17), we have

$$\begin{aligned} \Vert u_i[k]\Vert \le \left( \sum _{\begin{array}{c} 2 \le \ell \le i \\ 1 \le q \le \ell \end{array}}\max _{|\omega | = \ell }\{\Vert c_\omega \Vert \}{\left( {\begin{array}{c}\ell \\ q\end{array}}\right) }n^qr^{\ell - q}\mu ^{\ell - 1}\Vert \imath _{i - 1}\Vert ^\ell \alpha _{i - 1}^q\Vert \bar{X}_{i - 1}[0]\Vert ^q\beta ^{\ell - q}\right) \max _{\begin{array}{c} 2 \le \ell \le i \\ 1 \le q \le \ell \end{array}}\{\lambda _{i - 1}^qs^{\ell - q}\}^k, \end{aligned}$$

whose right side is bounded above by

$$\begin{aligned} \underbrace{\left( \sum _{\ell = 2}^i\max _{|\omega | = \ell }\{\Vert c_\omega \Vert \}\mu ^{\ell - 1}\Vert \imath _{i - 1}\Vert ^\ell \sum _{q = 1}^\ell \left( {\begin{array}{c}\ell \\ q\end{array}}\right) n^qr^{\ell - q}\alpha _{i - 1}^qM^{q - 1}\beta ^{\ell - q}\right) }_{=: \gamma _i} {\underbrace{\max _{\begin{array}{c} 2 \le \ell \le i \\ 1 \le q \le \ell \end{array}}\{\lambda _{i - 1}^qs^{\ell - q}\}}_{\lambda _i}}^k\Vert \bar{X}_i[0]\Vert . \end{aligned}$$

Since \(0< \lambda _{i - 1} < 1\) and \(s \ge 1\), the maximization is solved by \(\ell = i\) and \(q = 1\), thus, the maximization term is equal to \(\lambda _i\). \(\square \)

1.2 Proof of Lemma 5

Proof (Lemma 5)

Using \(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1} + \imath _{i - 1} \circ P_{i - 1} = \mathrm {Id}_\mathfrak {g}\) and bilinearity of the Lie bracket,

$$\begin{aligned} P_i\omega = P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[Y_2,[\ldots ,Y_{|\omega |}]\cdots ] + P_i[\imath _{i - 1} \circ P_{i - 1}Y_1,[Y_2,[\ldots ,Y_{|\omega |}]\cdots ], \qquad Y_j \in \widetilde{X} \cup \widetilde{W}. \end{aligned}$$
(31)

We next decompose the second letter of the first term in (31) with respect to \(\imath _0 \circ P_0\) and invoke Lemma 2:

$$\begin{aligned} P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[Y_2,[\ldots ,Y_{|\omega |}]\cdots ]= & {} P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[\imath _0 \circ P_0 Y_2,[\ldots ,Y_{|\omega |}]\cdots ]\nonumber \\&+ P_i\underbrace{[\underbrace{(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1}_{\in \mathfrak {h}^{(i)}},[\underbrace{(\mathrm {Id}_\mathfrak {g}- \imath _0 \circ P_0)Y_2}_{\in \mathfrak {h}^{(1)}},[\ldots ,Y_{|\omega |}]\cdots ]}_{\in \mathfrak {h}^{(i + 1)}},\nonumber \\ \end{aligned}$$
(32)

where membership in \(\mathfrak {h}^{(i + 1)}\) follows from Lemma 1; the second term is zero, since \(P_i\mathfrak {h}^{(i + 1)} = 0\). Decomposing the rest of the letters in (32) with respect to \(\imath _0 \circ P_0\) yields

$$\begin{aligned} P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[Y_2,[\ldots ,Y_{|\omega |}]\cdots ] = P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[\imath _0 \circ P_0 Y_2,[\ldots ,\imath _0 \circ P_0 Y_{|\omega |}]\cdots ].\nonumber \\ \end{aligned}$$
(33)

Now decompose the second letter of the second term in (31) with respect to \(\imath _{i - 1} \circ P_{i - 1}\):

$$\begin{aligned} P_i[\imath _{i - 1} \circ P_{i - 1}Y_1,[Y_2,[\ldots ,Y_{|\omega |}]\cdots ]= & {} P_i[\imath _{i - 1} \circ P_{i - 1}Y_1,[\overbrace{(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_2}^{\in \mathfrak {h}^{(i)}},[Y_3,[\ldots ,Y_{|\omega |}]\cdots ] \nonumber \\&\quad + P_i[\imath _{i - 1} \circ P_{i - 1}Y_1,[\imath _{i - 1} \circ P_{i - 1} Y_2,[Y_3,[\ldots ,Y_{|\omega |}]\cdots ]. \end{aligned}$$
(34)

We continue in a fashion similar to that following (31), the only noteworthy difference is the decomposition of \(\imath _{i - 1} \circ P_{i - 1}Y_1\) with respect to \(\imath _0 \circ P_0\). \(\square \)

Claim 3

For all \(i \ge 1\), the following diagram commutes.

Proof (Claim 3)

From the definitions of \(P_0\), \(P_{i - 1}\), and \(\imath _{i - 1}\), we have \(\mathfrak {g}= {{\,\mathrm{Im}\,}}\imath _{i - 1} \oplus \mathfrak {h}^{(i)}\) and \({{\,\mathrm{Ker}\,}}P_0 = \mathfrak {h}\supseteq \mathfrak {h}^{(i)} = {{\,\mathrm{Ker}\,}}P_{i - 1}\). Then \(P_0\mathfrak {g}= P_0 {{\,\mathrm{Im}\,}}\imath _{i - 1} \oplus P_0 \mathfrak {h}^{(i)} = P_0 {{\,\mathrm{Im}\,}}\imath _{i - 1}\). \(\square \)

It follows immediately from Claim 3 that \(\imath _0 \circ P_0 \circ \imath _{i - 1} \circ P_{i - 1} = \imath _0 \circ P_0\). Thus, the decomposition process specified above yields

$$\begin{aligned} P_i\omega= & {} P_i[\imath _{i - 1} \circ P_{i - 1} Y_1,[\imath _{i - 1} \circ P_{i - 1} Y_2,[Y_3,[\ldots ,Y_{|\omega |}]\cdots ] \nonumber \\&\quad + P_i[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_1,[\imath _0 \circ P_0 Y_2,[\ldots ,\imath _0 \circ P_0 Y_{|\omega |}]\cdots ] \nonumber \\&\quad + P_i[\imath _0 \circ P_0Y_1,[(\mathrm {Id}_\mathfrak {g}- \imath _{i - 1} \circ P_{i - 1})Y_2,[\imath _0 \circ P_0 Y_3,[\ldots ,\imath _0 \circ P_0 Y_{|\omega |}]\cdots ].\nonumber \\ \end{aligned}$$
(35)

Applying this process to the rest of the letters in the first word of (35) completes the proof. \(\square \)

1.3 Proof of Claim 2

Proof (Claim 2)

Suppose f satisfies (5). In particular, suppose there exists \(\varrho _1 \le 1\) such that

$$\begin{aligned} \Vert X_1\Vert ,\ldots ,\Vert X_n\Vert ,\Vert W_1\Vert ,\ldots ,\Vert W_r\Vert < \varrho _1. \end{aligned}$$

On this domain, we have \(\Vert \omega \Vert \le \mu ^{|\omega | - 1}\varrho _1^{|\omega |}\) and

$$\begin{aligned} \sum _\omega \mu ^{|\omega | - 1}\Vert c_\omega \Vert \varrho _1^{|\omega |} < \infty . \end{aligned}$$

We can rewrite this summation by grouping all words of the same length:

$$\begin{aligned} \sum _{\ell = 2}^\infty \mu ^{\ell - 1}\left( \sum _{|\omega | = \ell }\Vert c_\omega \Vert \right) \varrho _1^\ell , \end{aligned}$$

which can be viewed as a series over the single index \(\ell \). Since this series converges, by the root test [33, Theorem 3.33], we have

$$\begin{aligned} \begin{aligned} \limsup _{\ell \rightarrow \infty }\root \ell \of {\mu ^{\ell - 1}\varrho _1^\ell \sum _{|\omega | = \ell }\Vert c_\omega \Vert }&= \varrho _1\limsup _{\ell \rightarrow \infty }\mu ^{1 - \frac{1}{\ell }}\limsup _{\ell \rightarrow \infty }\root \ell \of {\sum _{|\omega | = \ell }\Vert c_\omega \Vert } \\&= \varrho _1\mu \limsup _{\ell \rightarrow \infty }\root \ell \of {\sum _{|\omega | = \ell }\Vert c_\omega \Vert } \\&\le 1. \end{aligned} \end{aligned}$$

Let \(0< \varrho _2 < \frac{\varrho _1}{\Vert \imath _0\Vert }\). Applying the root test to the series

$$\begin{aligned} \sum _\omega (\mu \Vert \imath _0\Vert )^{|\omega | - 1}|\omega |\Vert c_\omega \Vert \varrho _2^{|\omega |}, \end{aligned}$$
(36)

we have

$$\begin{aligned} \begin{aligned} \limsup _{\ell \rightarrow \infty }\root \ell \of {\ell (\mu \Vert \imath _0\Vert )^{\ell - 1}\varrho _2^\ell \sum _{|\omega | = \ell }\Vert c_\omega \Vert }&= \varrho _2\mu \Vert \imath _0\Vert \limsup _{\ell \rightarrow \infty }\root \ell \of {\ell }\limsup _{\ell \rightarrow \infty }\root \ell \of {\sum _{|\omega | = \ell }\Vert c_\omega \Vert } \\&= \varrho _2\mu \Vert \imath _0\Vert \limsup _{\ell \rightarrow \infty }\root \ell \of {\sum _{|\omega | = \ell }\Vert c_\omega \Vert } \\&< \varrho _1\mu \limsup _{\ell \rightarrow \infty }\root \ell \of {\sum _{|\omega | = \ell }\Vert c_\omega \Vert } \\&< 1, \end{aligned} \end{aligned}$$

which implies that (36) converges. Let \(\varrho \le \varrho _2^2\), then for all \(|\omega | \ge 2\), \(\varrho ^{|\omega | - 1} < \varrho _2^{|\omega |}\). Then, by the comparison test [33, Theorem 3.25], if \(\Vert \bar{X}_0\Vert ,\Vert \bar{W}_0\Vert \le \varrho \), then (29) converges. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, P.J., Nielsen, C. Global stability of a class of difference equations on solvable Lie algebras. Math. Control Signals Syst. 32, 177–208 (2020). https://doi.org/10.1007/s00498-020-00259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00259-7

Keywords

Mathematics Subject Classification

Navigation