Skip to main content
Log in

Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We introduce a numerical methodology to compute the solution of an adhesive normal contact problem on rough surfaces with the Boundary Element Method. Based on the Fast Fourier Transform and the Westergaard’s fundamental solution, the proposed algorithm enables to solve efficiently the constrained minimization problem: the numerical solution strictly verifies contact orthogonality and the algorithm takes advantage of the constraints to speed up the minimization. Comparisons with the analytical solution of the Hertz case prove the quality of the numerical computation. The method is also used to compute normal adhesive contact between rough surfaces made of multiple asperities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bemporad A, Paggi M (2015) Optimization algorithms for the solution of the frictionless normal contact between rough surfaces. Int J Solids Struct 69:94–105

    Article  Google Scholar 

  2. Campañá C, Müser MH (2006) Practical green’s function approach to the simulation of elastic semi-infinite solids. Phys Rev B 74:075,420

    Article  Google Scholar 

  3. Campañá C, Müser MH, Robbins MO (2008) Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J Phys Condens Matter 20(35):354,013+

    Article  Google Scholar 

  4. Carbone G, Bottiglione F (2008) Asperity contact theories: Do they predict linearity between contact area and load? J Mech Phys Solids 56(8):2555–2572

    Article  MATH  Google Scholar 

  5. Carbone G, Mangialardi L (2004) Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J Mech Phys Solids 52(6):1267–1287

    Article  MATH  Google Scholar 

  6. Carbone G, Mangialardi L (2008) Analysis of the adhesive contact of confined layers by using a green’s function approach. J Mech Phys Solids 56(2):684–706

    Article  MathSciNet  MATH  Google Scholar 

  7. Carbone G, Scaraggi M, Tartaglino U (2009) Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur Phys J E 30:65–74

    Article  Google Scholar 

  8. Carpick RW, Ogletree DF, Salmeron M (1978) A general equation for fitting contact area and friction versus load measurements. J Colloid Interface Sci 211:395–400

    Article  Google Scholar 

  9. Chaudhury MK (1996) Interfacial interaction between low-energy surfaces. Mater Sci Eng R Rep 16(3):97–159

    Article  Google Scholar 

  10. Derjaguin B, Muller V, Toporov Y (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  Google Scholar 

  11. Greenwood JA (2006) A simplified elliptic model of rough surface contact. Wear 261(2):191–200

    Article  MathSciNet  Google Scholar 

  12. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300–319

    Article  Google Scholar 

  13. Hu YZ, Tonder K (1992) Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis. Int J Mach Tools Manuf 32:83–90

    Article  Google Scholar 

  14. Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70(2):026,117+

    Article  Google Scholar 

  15. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558):301–313

    Article  Google Scholar 

  16. Longuet-Higgins MS (1957) Statistical properties of an isotropic random surface. Philos Trans R Soc A 250(975):157–174

    Article  MathSciNet  MATH  Google Scholar 

  17. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150(1):243–269

    Article  Google Scholar 

  18. Müser MH (2014) Single-asperity contact mechanics with positive and negative work of adhesion: influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids. Beilstein J Nanotechnol 5:419–437

    Article  Google Scholar 

  19. Nguyen QS (2000) Stability and nonlinear solid mechanics, Wiley

  20. Paggi M, Ciavarella M (2010) The coefficient of proportionality k between real contact area and load, with new asperity models. Wear 268(7–8):1020–1029

    Article  Google Scholar 

  21. Pastewka L, Robbins MO (2014) Contact between rough surfaces and a criterion for macroscopic adhesion. Proc Natl Acad Sci 111(9):3298–3303

    Article  Google Scholar 

  22. Pei L, Hyun S, Molinari JF, Robbins MO (2005) Finite element modeling of elasto-plastic contact between rough surfaces. J Mech Phys Solids 53(11):2385–2409

    Article  MATH  Google Scholar 

  23. Persson BNJ (2001) Theory of rubber friction and contact mechanics. J Chem Phys 115(8):3840–3861

    Article  Google Scholar 

  24. Persson BNJ (2002) Adhesion between elastic bodies with randomly rough surfaces. Phys Rev Lett 89:245,502

    Article  Google Scholar 

  25. Polonsky I, Keer L (1999) A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231(2):206–219

    Article  Google Scholar 

  26. Putignano C, Afferrante L, Carbone G, Demelio G (2012) A new efficient numerical method for contact mechanics of rough surfaces. Int J Solids Struct 42:338–343

    Article  Google Scholar 

  27. Signorini A (1933) Sopra alcune questioni di elastostatica. Atti della Societa Italiana per il Progresso delle Scienze

  28. Stanley HM, Kato T (1997) An FFT-based method for rough surface contact. J Tribol 119:481–485

    Article  Google Scholar 

  29. Westergaard H (1937) Bearing pressures and cracks. J Appl Mech 6:49–53

    Google Scholar 

  30. Wriggers P (2006) Computational contact mechanics. Springer Science and Business Media, New York

    Book  MATH  Google Scholar 

  31. Yastrebov VA, Anciaux G, Molinari JF (2015) From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int J Solids Struct 52:83–102

    Article  Google Scholar 

Download references

Acknowledgements

Support for V.R. from the EPFL Fellows fellowship programme co-funded by Marie Skodowska-Curie, Horizon 2020 Grant agreement no. 665667 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Rey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, V., Anciaux, G. & Molinari, JF. Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution . Comput Mech 60, 69–81 (2017). https://doi.org/10.1007/s00466-017-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1392-5

Keywords

Navigation