Skip to main content
Log in

Extended variational theory of complex rays in heterogeneous Helmholtz problem

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the past years, a numerical technique method called Variational Theory of Complex Rays (VTCR) has been developed for vibration problems in medium frequency. It is a Trefftz Discontinuous Galerkin method which uses plane wave functions as shape functions. However this method is only well developed in homogeneous case. In this paper, VTCR is extended to the heterogeneous Helmholtz problem by creating a new base of shape functions. Numerical examples give a scope of the performances of such an extension of VTCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Strouboulis T, Hidajat R (2006) Partition of unity method for Helmholtz equation: q-convergence for plane-wave and wave-band local bases. Appl Math 51:181–204

    Article  MathSciNet  MATH  Google Scholar 

  2. Cessenat O, Despres B (1998) Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J Numer Anal 35:255–299

    Article  MathSciNet  MATH  Google Scholar 

  3. Gabard G, Gamallo P, Huttunen T (2011) A comparison of wave-based discontinuous Galerkin, ultra-weak and least-square methods for wave problems. Int J Numer Methods Eng 85:380–402

    Article  MathSciNet  MATH  Google Scholar 

  4. Gittelson CJ, Hiptmair R, Perugia I (2009) Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM Math Model Numer Anal 43:297–331

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnett A, Betcke T (2008) Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J Comput Phys 227:7003–7026

    Article  MathSciNet  MATH  Google Scholar 

  6. Farhat C, Harari I, Franca L (2001) The discontinuous enrichment method. Comput Methods Appl Mech Eng 190:6455–6479

    Article  MathSciNet  MATH  Google Scholar 

  7. Desmet W, Sas P, Vandepitte D (2001) An indirect Trefftz method for the steady-state dynamic analysis of coupled vibro-acoustic systems. Comput Assist Mech Eng Sci 8:271–288

    MATH  Google Scholar 

  8. Tezaur R, Kalashnikova I, Farhat C (2014) The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber. Comput Methods Appl Mech Eng 268:126–140

    Article  MathSciNet  MATH  Google Scholar 

  9. Ladevèze P (1996) A new computational approach for structure vibrations in the medium frequency range. C R Acad Sci Paris 332:849–856

    MATH  Google Scholar 

  10. Rouch P, Ladevèze P (2003) The variational theory of complex rays: a predictive tool for medium-frequency vibrations. Comput Methods Appl Mech Eng 192:3301–3315

    Article  MATH  Google Scholar 

  11. Ladevèze P, Blanc L, Rouch P, Blanzé C (2003) A multiscale computational method for medium-frequency vibrations of assemblies of heterogeneous plates. Comput Struct 81:1267–1276

    Article  MATH  Google Scholar 

  12. Riou H, Ladevèze P, Rouch P (2004) Extension of the variational theory of complex rays to shells for medium-frequency vibrations. Sound Vib 272:341–360

    Article  Google Scholar 

  13. Riou H, Ladevèze P, Sourcis B (2008) The multiscale VTCR approach applied to acoustics problems. Comput Acoust 16:487–505

    Article  MATH  Google Scholar 

  14. Kovalevsky L, Riou H, Ladevèze P (2013) On the use of the variational theory of complex rays for the analysis of 2-D exterior Helmholtz problem in an unbounded domain. J Wave Motion 50:428–436

    Article  MathSciNet  Google Scholar 

  15. Ladevèze P, Riou H (2014) On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics. Comput Methods Appl Mech Eng 278:729–743

    Article  MathSciNet  Google Scholar 

  16. Polyanin AD, Zaitsev VF (2002) Handbook of exact solutions for ordinary differential equations. CRC Press

  17. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput Methods Appl Mech Eng 295:127–149

    Article  MathSciNet  Google Scholar 

  18. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MathSciNet  MATH  Google Scholar 

  19. Givoli D (2004) High-order local non-reflecting boundary conditions: a review. J Wave Motion 39:319–326

    Article  MathSciNet  MATH  Google Scholar 

  20. Bayliss A, Turkel E (1980) Radiation boundary conditions for wave like equations. Commun Pure Appl Math 33:707–725

    Article  MathSciNet  MATH  Google Scholar 

  21. Antoine X, Barucq H, Bendali A (1999) Bayliss Turkel-like radiation conditions on surfaces of arbitrary shape. J Math Anal Appl 229:184–211

    Article  MathSciNet  MATH  Google Scholar 

  22. Givoli D (1999) Recent advances in the DtN FE method. Arch. Comput. Methods Eng. 6:71–116

    Article  MathSciNet  Google Scholar 

  23. Herrera I (1984) Boundary methods: an algebraic theory. Pitman Advanced Publishing Program, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ladeveze, P. & Riou, H. Extended variational theory of complex rays in heterogeneous Helmholtz problem. Comput Mech 59, 909–918 (2017). https://doi.org/10.1007/s00466-017-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1385-4

Keywords

Navigation