Skip to main content
Log in

Geometric constraints for shape and topology optimization in architectural design

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work proposes a shape and topology optimization framework oriented towards conceptual architectural design. A particular emphasis is put on the possibility for the user to interfere on the optimization process by supplying information about his personal taste. More precisely, we formulate three novel constraints on the geometry of shapes; while the first two are mainly related to aesthetics, the third one may also be used to handle several fabrication issues that are of special interest in the device of civil structures. The common mathematical ingredient to all three models is the signed distance function to a domain, and its sensitivity analysis with respect to perturbations of this domain; in the present work, this material is extended to the case where the ambient space is equipped with an anisotropic metric tensor. Numerical examples are discussed in two and three space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. The unpublished work carried out in this reference was obtained with the collaboration of some of the authors, using the exact same algorithms as those detailed in this article

References

  1. Aage N, Amir O, Clausen A, Hadar L, Maier D, Søndergaard A (2015) Advanced topology optimization methods for conceptual architectural design. In: Advances in architectural geometry 2014. Springer, pp 159–179

  2. Allaire G (2007) Conception optimale de structures, Mathématiques & Applications (Berlin), vol 58. Springer, Berlin

    MATH  Google Scholar 

  3. Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Mutli-phase structural optimization via a level-set method. In: ESAIM: control, optimisation and calculus of variations, 20, pp. 576-611. doi:10.1051/cocv/2013076

  4. Allaire G, Dapogny C, Faure A, Michailidis G (2017) Shape optimization of a layer by layer mechanical constraint for additive manufacturing (submitted) Preprint: https://hal.archives-ouvertes.fr/hal-01398877v2

  5. Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53

    Article  MathSciNet  Google Scholar 

  6. Allaire G, Jouve F, Michailidis G (2014) Thickness control in structural optimization via a level set method. (to appear in SMO), HAL preprint: hal-00985000v1

  7. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C. R. Acad. Sci. Paris Série I 334:1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  8. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  9. Amir O, Bogomolny M (2011) Topology optimization for conceptual design of reinforced concrete structures. In: Proceeding of the 9th world congress on structural and multidisciplinary optimization, June 13–17 2010, Shizuoka, Japan

  10. Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim 47(2):157–174

    Article  MathSciNet  MATH  Google Scholar 

  11. Bajcsy R, Kovacic S (1989) Multiresolution elastic matching. Comput Vis Gr Image Process 46:188–198

    Google Scholar 

  12. Bando K, Din R, Fouquerand M, Gilbert L, Moissenot A, Nicolas M (2016) Optimisation d’une structure et application architecturale. PSC MEC07, Ecole Polytechnique (X)

  13. Baumgartner A, Harzheim L, Mattheck C (1992) Sko (soft kill option): the biological way to find an optimum structure topology. Int J Fatigue 14(6):387–393

    Article  Google Scholar 

  14. Bendsoe M, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Besserud K, Katz N, Beghini A (2013) Structural emergence: architectural and structural design collaboration at som. Architect Des 83(2):48–55

    Google Scholar 

  16. Bradner E, Iorio F, Davis M (2014) Parameters tell the design story: ideation and abstraction in design optimization. In: Proceedings of the symposium on simulation for architecture and urban design. Society for Computer Simulation International, p 26

  17. Royal Institute of British Architects, P.D.C.: http://www.ribapylondesign.com/home

  18. Burger M (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound 5:301–329

    Article  MathSciNet  MATH  Google Scholar 

  19. Campbell SL, Chancelier JP, Nikoukhah R (2006) Modeling and simulation in scilab/scicos. Springer, New York

    MATH  Google Scholar 

  20. Cannarsa P, Cardaliaguet P (2004) Representation of equilibrium solutions to the table problem of growing sandpiles. Interfaces Free Bound 6(4):435

    MathSciNet  MATH  Google Scholar 

  21. Chavel I (2006) Riemannian geometry: a modern introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Christensen P, Klarbring A (2009) An introduction to structural optimization, vol 153. Springer, Berlin

    MATH  Google Scholar 

  23. Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399

    Article  MathSciNet  Google Scholar 

  24. Clausen A, Aage N, Sigmund O (2014) Topology optimization with flexible void area. Struct Multidiscip Optim 50(6):927–943

    Article  MathSciNet  Google Scholar 

  25. Clausen A, Aage N, Sigmund O (2015) Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 290:524–541

    Article  MathSciNet  Google Scholar 

  26. Dambrine M, Kateb D (2010) On the ersatz material approximation in level-set methods. ESAIM Control Optim Calc Var 16(3):618–634

    Article  MathSciNet  MATH  Google Scholar 

  27. Dapogny C (2013) Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI. http://tel.archives-ouvertes.fr/tel-00916224

  28. Dapogny C, Frey P (2012) Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49(3):193–219

    Article  MathSciNet  MATH  Google Scholar 

  29. De Buhan M, Dapogny C, Frey P, Nardoni C (2016) An optimization method for elastic shape matching. C R Acad Sci Paris 354:783–787

    Article  MathSciNet  MATH  Google Scholar 

  30. De Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367

    Article  MathSciNet  MATH  Google Scholar 

  31. Delfour M, Zolésio JP (2001) Shapes and geometries, Advances in design and control, vol 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    MATH  Google Scholar 

  32. Delfour M, Zolésio JP (2005) Shape identification via metrics constructed from the oriented distance function. Control Cybern 34(1):137

    MathSciNet  MATH  Google Scholar 

  33. Dombernowsky P, Søndergaard A (2009) Three-dimensional topology optimisation in architectural and structural design of concrete structures. In: Proceedings of the international association for shell and spatial structures (IASS) symposium, Valencia, Spain

  34. Dunning P, Kim H (2015) Introducing the sequential linear programming level-set method for topology optimization. Struct Multidiscip Optim 51(3):631–643

    Article  MathSciNet  Google Scholar 

  35. Feringa J, Søndergaard A (2012) An integral approach to structural optimization and fabrication. In: ACADIA 12: synthetic digital ecologies [proceedings of the 32nd annual conference of the association for computer aided design in architecture (ACADIA) ISBN 978-1-62407-267-3], pp 491–497

  36. Frattari L (2011) The structural form: Topology optimization in architecture and industrial design. Ph.D. thesis, School of Advanced Studies. Dottorato di ricerca in“ Architettura e Design”: curriculum Conoscenza e progetto delle forme di insediamento”(XXIII cycle)

  37. Frey P, George PL (2010) Mesh generation. Wiley-ISTE, New York

    Google Scholar 

  38. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically a new moving morphable components based framework. J Appl Mech 81(8):081,009

    Article  Google Scholar 

  39. Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378. doi:10.1016/j.cma.2014.01.010

    Article  MathSciNet  MATH  Google Scholar 

  40. Henrot A, Pierre M (2005) Variation et optimisation de formes: une analyse géométrique, vol 48. Springer, Berlin

    MATH  Google Scholar 

  41. Larena, A.B.: Shape design methods based on the optimisation of the structure. historical background and application to contemporary architecture. In: Proceedings of the third international congress on construction history (2009)

  42. Li Y, Nirenberg L (2005) The distance function to the boundary, finsler geometry. Commun. Pure Appl. Math. 58(1):85-146-1209

    Article  MATH  Google Scholar 

  43. Mattheck C (1990) Design and growth rules for biological structures and their application to engineering. Fatigue Fract Eng Mater Struct 13(5):535–550

    Article  Google Scholar 

  44. Michailidis G (2014) Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. Ph.D. thesis, Ecole Polytechnique X 2014. http://pastel.archives-ouvertes.fr/pastel-00937306

  45. Murat F, Simon J (1976) Etude de problèmes d’optimal design. Optim Tech Model Optim Serv Man Part 2:54–62

    Article  MATH  Google Scholar 

  46. Nahmad Vazquez A, Bhooshan S, Inamura C, Sondergaard A (2014) Design, analysis and fabrication of expressive, efficient shell structures: a prototype exploring synergy between architecture, engineering and manufacture. In: Proceedings of the IASS-SLTE 2014 symposium “Shells, Membranes and Spatial Structures: Footprints”. IASS SLTE

  47. Novotny A, Sokołowski J (2013) Topological derivatives in shape optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In Applied mathematical sciences, vol 153. Springer, New York

  49. Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288

    Article  MathSciNet  MATH  Google Scholar 

  50. Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  51. Persson PO (2004) Mesh generation for implicit geometries. Ph.D. thesis, Citeseer

  52. Pironneau O, Hecht F, Le Hyaric A. Freefem++ version 2.15-1

  53. Ponginan R. Danish team uses hyperworks to prove the value of topology optimization for concrete architectural structures. http://www.altairuniversity.com/2015/04/14/danish-team-uses-hyperworks-to-prove-the-value-of-topology-optimization-for-concrete-architectural-structures/

  54. Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng Comput 15(8):1031–1048

    Article  MATH  Google Scholar 

  55. Sasaki M, Itō T, Isozaki A (2007) Morphogenesis of flux structure. AA Publications, London

    Google Scholar 

  56. Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  57. Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Computat Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  58. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  59. Sigmund O, Bendsøe M (2004) Topology optimization: from airplanes to nano-optics. In: Bridging from technology to society. Technical University of Denmark, Lyngby, Denmark

  60. Strain J (1999) Semi-lagrangian methods for level set equations. J Comput Phys 151(2):498–533

    Article  MathSciNet  MATH  Google Scholar 

  61. Stromberg LL, Beghini A, Baker WF, Paulino GH (2012) Topology optimization for braced frames: combining continuum and beam/column elements. Eng Struct 37:106–124

    Article  Google Scholar 

  62. Sundaram MM, Ananthasuresh G (2009) Gustave eiffel and his optimal structures. Resonance 14(9):849–865

    Article  Google Scholar 

  63. Vallet MG, Hecht F, Mantel B (1991) Anisotropic control of mesh generation based upon a Voronoi type method. Arcilla AS, Häuser J, Eiseman PR, Thompson JF (eds) Third international conference on numerical grid generation in computational fluid dynamics and related fields. North-Holland, pp 93–103

  64. Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  65. Wikipedia: https://commons.wikimedia.org/wiki/file:the_qatar_national_convention_center_qncc_(6953154154).jpg

  66. Wolff J (2012) The law of bone remodelling. Springer, Berlin

    Google Scholar 

  67. Xia Q, Shi T (2015) Constraints of distance from boundary to skeleton: for the control of length scale in level set based structural topology optimization. Comput Methods Appl Mech Eng 295:525–542

    Article  MathSciNet  Google Scholar 

  68. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45):2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (mmc) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work has been supported by the OptArch Project (H2020-MSCA-RISE-2015). The authors are indebted to A. Beghini, from Skidmore Owings & Merrill, for his help in the definition of the examples discussed in Remark 1 and Sect. 5. They also ackowledge fruitful discussions with N. Aage (Technical University of Denmark) and O. Amir (Technion, Israel Institute of Technology). G. Allaire is a member of the DEFI Project at INRIA Saclay Ile-de-France. A. Faure and R. Estevez also acknowledge support from the Labex CEMAM at Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Dapogny.

Appendix: Mathematical details

Appendix: Mathematical details

In this appendix, we present the mathematical proofs of the results stated in Sects. 4.3.1 and 5.

1.1 Proofs of the properties of the anisotropic, signed distance function

Proof of Proposition 4

The proof can be achieved in two ways: one could directly adapt the proofs of the results of Propositions 1 and 2, or observe that the anisotropic context can be derived from the isotropic one via a suitable transformation. We rely on this second point of view.

More precisely, we consider the mapping \({\mathbb {R}}^d \ni x \mapsto M^{\frac{1}{2}}x \in {\mathbb {R}}^d\), and set \(x_M := M^{\frac{1}{2}}x\) for short. As a straightforward consequence of definitions, for any two points \(x,y\in {\mathbb {R}}^d\), on has \(|x - y |_M = |x_M - y_M |\). It follows that the signed distance functions \(d_\varOmega \) and \(d_\varOmega ^M\) (resp. sets of projections \(\varPi _{\partial \varOmega }\) and \(\varPi _{\partial \varOmega }^M\)) are related as:

$$\begin{aligned} \forall x \in {\mathbb {R}}^d, \,\, d_\varOmega ^M(x)= & {} d_{\varOmega _M}(x_M),\nonumber \\ \text { and } \varPi _{\partial \varOmega }^M(x)= & {} M^{-\frac{1}{2}}\varPi _{\partial \varOmega _M}(x_M), \end{aligned}$$
(35)

where we have introduced the transformed domain \(\varOmega _M := M^{\frac{1}{2}} \varOmega \).

The following lemma will be used repeatedly in the following. Its proof is postponed to the end of this section.

Lemma 1

Let \(\varOmega \) be a bounded domain of class \({\mathcal {C}}^2\) and M be a symmetric, positive definite matrix. Then,

  1. 1.

    The unit normal vector \(n_{\varOmega _M}\) to \(\partial \varOmega _M\), pointing outward \(\varOmega _M\) reads:

    $$\begin{aligned}&\forall x \in \partial \varOmega , \,\, n_{\varOmega _M}(x_M) = \frac{\text {com}(M^{\frac{1}{2}}) n_\varOmega (x)}{|\text {com}(M^{\frac{1}{2}}) n_\varOmega (x) \vert } \nonumber \\&\quad = \frac{M^{-\frac{1}{2}} n_\varOmega (x)}{|M^{-\frac{1}{2}} n_\varOmega (x)|}, \end{aligned}$$
    (36)

    where \(\text {com}(B)\) stands for the cofactor matrix of a \(d \times d\) matrix B.

  2. 2.

    The second fundamental form \(II^M\) of the boundary \(\partial \varOmega _M\) satisfies the identity:

    $$\begin{aligned} \forall x \in \partial \varOmega , \,\, M^{\frac{1}{2}} II^M_{x_M} M^{\frac{1}{2}} = \frac{1}{|M^{-\frac{1}{2}}n_\varOmega (x) \vert } II_{x}. \end{aligned}$$

It follows immediately from (35) that the skeleton \(\varSigma ^M\) is obtained from that \(\varSigma _M\) of \(\varOmega _M\) via \(\varSigma ^M = M^{-\frac{1}{2}} \varSigma _M\). Hence, for \(x \notin \partial \varOmega \), \(d_\varOmega ^M\) is differentiable at x if and only if \(x \notin \varSigma ^M\); using again (35), one has then:

$$\begin{aligned} p_{\partial \varOmega }^M(x) = M^{-\frac{1}{2}} p_{\partial \varOmega _M}(x_M). \end{aligned}$$
(37)

Hence, for \(x \notin \partial \varOmega \), \(x \notin \varSigma ^M\), (16) follows and (i) is proved.

To obtain (ii), we simply apply (11) to the domain \(\varOmega _M\), and rely on Lemma 1; for \(x \notin \partial \varOmega \), \(x \notin \varSigma ^M\), the sequence of equalities

$$\begin{aligned} \nabla d_{\varOmega }^M(x)= & {} M^{\frac{1}{2}}\nabla d_{\varOmega _M}(x_M) =M^{\frac{1}{2}} n_{\varOmega _M}(p_{\partial \varOmega _M}(x_M)) \\= & {} \frac{1}{|M^{-\frac{1}{2}}n_\varOmega (p_{\partial \varOmega }^M(x)) |} n_\varOmega (p_{\partial \varOmega }^M(x)) \end{aligned}$$

proves the first part of (17). As for the second part, one has:

$$\begin{aligned} x_M = p_{\partial \varOmega _M}(x_M) + d_{\varOmega _M}(x_M) n_{\varOmega _M}(p_{\partial \varOmega _M}(x_M)). \end{aligned}$$

Then, using (35), (37) and Lemma 1, it follows:

$$\begin{aligned} \begin{array}{ccl} x &{}=&{} M^{-\frac{1}{2}} p_{\partial \varOmega _M}(x_M) + d_{\varOmega _M}(x_M) M^{-\frac{1}{2}} n_{\varOmega _M}(p_{\partial \varOmega _M}(x_M)), \\ &{}=&{} p_{\partial \varOmega }^M(x) + \frac{d_\varOmega ^M(x)}{|\text {com}(M^{\frac{1}{2}}) n_\varOmega (p_{\partial \varOmega }^M(x))|} M^{-\frac{1}{2}} \text {com}(M^{\frac{1}{2}}) n_\varOmega (p_{\partial \varOmega }^M(x)), \\ &{}=&{} p_{\partial \varOmega }^M(x) + \frac{d_\varOmega ^M(x)}{|M^{-\frac{1}{2}} n_\varOmega (p_{\partial \varOmega }^M(x))|} M^{-1}n_\varOmega (p_{\partial \varOmega }^M(x)), \end{array} \end{aligned}$$

which is the desired result.

Point (iii) is a straightforward consequence of the first two points (and notably the fact that \(\varSigma ^M = M^{-\frac{1}{2}} \varSigma _M\)), and Proposition 1.

Likewise, point (iv) follows from Proposition 2, and the transformation rule of Lemma 1 for the second fundamental form of \(\varOmega _M\).

Eventually, point (v) follows easily from a combination of (37), Lemma 1, and the expression (13) of the derivative of the usual projection mapping. \(\square \)

We now provide the missing ingredient in the proof of Proposition 4.

Proof of Lemma 1

The first point is classical (and actually holds in a much larger context than that of linear mappings), and we concentrate on that of the second one. To this end, we use the following elementary characterization: for a given tangent vector \(v_M = M^{\frac{1}{2}}v\) to \(\partial \varOmega _M\) (i.e. \(v_M \in T_{x_M}\partial \varOmega _M\)), where \(v \in T_x \partial \varOmega \),

$$\begin{aligned} II^M_{x_M}(v_M,v_M) = \langle \gamma ^{\prime \prime }(0), n_{\varOmega _M}(x_M) \rangle , \end{aligned}$$
(38)

for any curve \(\gamma : (-t_0,t_0) \rightarrow \partial \varOmega _M\) of class \({\mathcal {C}}^2\) such that \(\gamma (0) = x_M\), \(\gamma ^\prime (0) = v_M\). Let us choose \(\gamma (t) = M^{\frac{1}{2}} \zeta (t)\), where \(\zeta : (-t_0,t_0) \rightarrow \partial \varOmega \) is a curve of class \({\mathcal {C}}^2\) such that \(\zeta (0) = x\), \(\zeta ^\prime (0) = v\). Then, (38) together with (36) yield:

$$\begin{aligned} \begin{array}{ccl} II^M_{x_M}(v_M,v_M) &{}=&{} \frac{1}{|\text {com}(M^{\frac{1}{2}}) n_\varOmega (x) \vert } \langle \zeta ^{\prime \prime }(0), M^{\frac{1}{2}}\text {com}(M^{\frac{1}{2}}) n_\varOmega (x) \rangle ,\\ &{}=&{} \frac{\text {det}(M^{\frac{1}{2}})}{|\text {com}(M^{\frac{1}{2}}) n_\varOmega (x) \vert } \langle \zeta ^{\prime \prime }(0), n_\varOmega (x) \rangle ,\\ &{}=&{} \frac{1}{|M^{-\frac{1}{2}}n_\varOmega (x) \vert } \langle \zeta ^{\prime \prime }(0), n_\varOmega (x) \rangle , \end{array} \end{aligned}$$

and the desired result follows. \(\square \)

Proofs of Propositions 5 and 6

Again, both results may be equivalently inferred from their isotropic counterparts, by using the isomorphism \(x \mapsto M^{\frac{1}{2}}x\) in the same way as in the proof of Proposition 4, or by adapting their original proofs (see [32] and [27]) to the present anisotropic context, and we omit further details about these points. \(\square \)

1.2 Details of the calculations of the shape derivatives of Sect. 5

Proof of Proposition 8

The proof is carried out in the work [4], and is reproduced in here for convenience.

For \(\theta \in \varTheta _{ad}\), a change of variables in the boundary integral (22) yields (see e.g. [40] Prop. 5.4.3):

$$\begin{aligned} P(\varOmega _\theta ) = \int _{\varGamma }{\varphi ( n_{\varOmega _\theta }\circ (\text {Id}+\theta ))\, |\text {com}(\text {Id}+\theta ) |\,ds}. \end{aligned}$$

Using the well-known identity over matrices:

$$\begin{aligned} \text {com}(M) = \text {det}(M) M^{-T}, \end{aligned}$$

we obtain that \(\theta \mapsto |\text {com}(I+\nabla \theta ) |\) is Fréchet-differentiable at \(\theta = 0\), and

$$\begin{aligned}&|\text {com}(I+\nabla \theta ) |= 1+ \text {div}_{\partial \varOmega }(\theta ) \\&\quad +\, o(\theta ), \text { where } \frac{|o(\theta )|}{||\theta ||_{{\mathcal {C}}^{1,\infty }({\mathbb {R}}^d,{\mathbb {R}}^d) }} \mathop {\longrightarrow }\limits ^{\theta \rightarrow 0} 0. \end{aligned}$$

In this formula, we recall that \(\text {div}_{\partial \varOmega } V := \text {div}(V) - \langle \nabla V n ,n\rangle \) stands for the tangential divergence of a (smooth enough) vector field \(V : \partial \varOmega \rightarrow {\mathbb {R}}^d\). Hence, using Lebesgue dominated convergence theorem and Proposition 3, it follows that \(\theta \mapsto P(\varOmega _\theta )\) is Fréchet-differentiable at 0, and that the corresponding derivative reads:

$$\begin{aligned}&\forall \theta \in \varTheta _{ad},\,\, P^\prime (\varOmega )(\theta ) = \\&\quad \int _\varGamma {\left( \nabla \varphi (n)\cdot \left( \left( \left( \nabla \theta ^T n \right) \cdot n \right) n \!- \!\nabla \theta ^T n\right) \!+\! \,\varphi (n) \text {div}_{\partial \varOmega }(\theta )\!\right) \,ds}. \end{aligned}$$

Using integration by parts on the boundary \(\varGamma \) (see [40], Prop. 5.4.9), together with the identity:

$$\begin{aligned} \nabla _{\partial \varOmega }(\theta \cdot n) = \nabla \theta ^T n + \nabla n^T \theta - (\nabla \theta ^T n \cdot n) n, \end{aligned}$$

we obtain:

$$\begin{aligned} P^\prime (\varOmega )(\theta )= & {} \int _\varGamma {\kappa \varphi (n) \theta \cdot n\,ds} - \int _\varGamma { \nabla \varphi (n) \cdot \nabla _{\partial \varOmega }(\theta \cdot n) \,ds} \\&+ \int _{\varGamma }{\left( \nabla \varphi (n) - \nabla _{\partial \varOmega }(\varphi (n))\right) \cdot \theta \,ds}. \end{aligned}$$

Eventually, using the symmetry property (14), the last integral in the right-hand side of the above equality vanishes, and the expected result follows. \(\square \)

Proof of Corollary 1

Using \(\varphi (n) = |n - n_g |^2\), \(\nabla \varphi (n) = 2(n-n_g)\) in Proposition 8 yields:

$$\begin{aligned} P_p^\prime (\varOmega )(\theta )= & {} \int _{\varGamma }{\kappa |n_\varOmega - n_g |^2 \theta \cdot n \,ds} \\&- \int _{\varGamma }{(n_\varOmega - n_g) \cdot \nabla _{\partial \varOmega }(\theta \cdot n)\,ds}. \end{aligned}$$

Using again integration by parts on the boundary on the second term in the right-hand side of the above equality yields:

$$\begin{aligned}&P_p^\prime (\varOmega )(\theta ) \\&\quad =\int _{\varGamma }{\kappa |n_\varOmega \!- \!n_g |^2 \theta \cdot n \,ds} \!-\! \int _{\varGamma }{(n_\varOmega \!-\! n_g) \!\cdot \!\nabla _{\partial \varOmega }(\theta \cdot n)\,ds},\\&\quad = \int _{\varGamma }\left( \kappa |n_\varOmega - n_g |^2 - 2\kappa (n_\varOmega - n_g) \cdot n_\varOmega \right. \\&\qquad \left. +\, 2(\kappa - \text {div}_{\partial \varOmega }(n_g))\right) \,\theta \cdot n \,ds, \end{aligned}$$

which leads to the desired result. \(\square \)

Proof of Theorem 1

It follows from Proposition 6 that \(P_a^M(\varOmega )\) is shape differentiable at an arbitrary shape \(\varOmega \in {{\mathcal {U}}}_{ad}\). An easy calculation then yields:

$$\begin{aligned}&\forall \theta \in \varTheta _{ad}, \,\, {P_a^M}^\prime (\varOmega )(\theta ) \\&\quad = \int _\varOmega {G(d_\varOmega ^M(x)) \langle M n^M(p_{\partial \varOmega }^M(x)), \theta (p_{\partial \varOmega }^M(x))\rangle \,dx}. \end{aligned}$$

We now proceed to achieve an expression of the above derivative with the convenient structure (5). To this end, recalling that \( \overline{\varSigma ^M}\) has zero Lebesgue measure (see Proposition 4), we apply the coarea formula to the mapping \(p_{\partial \varOmega }^M : \varOmega \setminus \overline{\varSigma ^M} \rightarrow \partial \varOmega \), as a curvilinear version of the classical Fubini theorem (see [21], or [3] in the same context):

$$\begin{aligned}&{P_a^M}^\prime (\varOmega )(\theta ) =\int _{\partial \varOmega }\langle Mn^M(x), \theta (x) \rangle \\&\quad \left( \int _{\text {ray}^M_{\partial \varOmega }(x) \cap \varOmega } {\frac{G(d_\varOmega ^M(z))}{\text {Jac}(p_{\partial \varOmega }^M(z)) }\,d\ell (z)}\right) \,ds(x), \end{aligned}$$

where we recall that \(\text {ray}_{\partial \varOmega }^M(x) = (p_{\partial \varOmega }^M)^{-1}(x)\), and the Jacobian \(\text {Jac}(p_{\partial \varOmega }^M(x))\) is defined as:

$$\begin{aligned} \text {Jac}(p_{\partial \varOmega }^M(z)) = \sqrt{\nabla p_{\partial \varOmega }^M(z)\nabla p_{\partial \varOmega }^M(z)^T}, \,\, z \in {\mathbb {R}}^d \setminus \overline{\varSigma ^M}. \end{aligned}$$

The only remaining task is then to calculate this Jacobian, which we do by using the representation (18) of \(\nabla p_{\partial \varOmega }^M\) in an orthonormal basis of \({\mathbb {R}}^d\):

$$\begin{aligned} \text {Jac}(p_{\partial \varOmega }^M(z)) \!= \!\prod _{i=1}^{d-1}{\left( 1 \!+ \! \frac{ d_\varOmega ^M(z)}{|M^{-\frac{1}{2}} n(p_{\partial \varOmega ^M}(z)) |}\lambda _i(p_{\partial \varOmega ^M}(z)) \! \right) ^{-1}}. \end{aligned}$$

This ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dapogny, C., Faure, A., Michailidis, G. et al. Geometric constraints for shape and topology optimization in architectural design. Comput Mech 59, 933–965 (2017). https://doi.org/10.1007/s00466-017-1383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1383-6

Keywords

Navigation