Skip to main content
Log in

Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AHA: (2005) Heart disease and stroke statistics—2005 update. American Heart Association, Dallas

    Google Scholar 

  2. AHA: (2006) Heart disease and stroke statistics—2006 update. American Heart Association, Dallas

    Google Scholar 

  3. AHA: (2008) Heart disease and stroke statistics—2008 update. American Heart Association, Dallas

    Google Scholar 

  4. Ai L, Vafai K (2006) A coupling model for macromolecule transport in a stenosed arterial wall. Int J Heat Mass Transf 49(9–10): 1568–1591

    Article  MATH  Google Scholar 

  5. Aikawa M, Libby P (2000) Lipid lowering reduces proteolytic and prothrombotic potential in rabbit atheroma. Ann N Y Acad Sci 902: 140–152

    Article  Google Scholar 

  6. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, Sukhova GK, Libby P (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97(24): 2433–2444

    Google Scholar 

  7. Aikawa M, Rabkin E, Sugiyama S, Voglic SJ, Fukumoto Y, Furukawa Y, Shiomi M, Schoen FJ, Libby P (2001) An hmg-coa reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103(2): 276–283

    Google Scholar 

  8. Arne E, Hilde Nortvedt A, Stine Nalum N, Pawel S, Catharina de Lange D (2008) Physical and chemical modifications of collagen gels: impact on diffusion. Biopolymers 89(2): 135–143

    Article  Google Scholar 

  9. Calo VM, Brasher N, Bazilevs Y, Hughes TJR (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1): 161–177

    Article  MATH  Google Scholar 

  10. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  11. Creel CJ, Lovich MA, Edelman ER (2000) Arterial paclitaxel distribution and deposition. Circ Res 86(8): 879–884

    Google Scholar 

  12. Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30): 5307–5314

    Article  Google Scholar 

  13. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release 141(3): 320–327

    Article  Google Scholar 

  14. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92(3): 657–671

    Google Scholar 

  15. Feenstra PH, Taylor CA (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3): 263–276

    Article  Google Scholar 

  16. Fry DL (1985) Mathematical models of arterial transmural transport. Am J Physiol Heart Circ Physiol 248(6): H240–H263

    Google Scholar 

  17. Fry DL (1987) Mass transport, atherogenesis, and risk. Arterioscler Thromb Vasc Biol 7(1): 88–100

    Article  Google Scholar 

  18. Godin B, P. Driessen WH, Proneth B, Lee S-Y, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P, Renata P (2010) An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69: 31–64

    Article  Google Scholar 

  19. Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H (2003) Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia. Am J Cardiol 91: 27–32

    Article  Google Scholar 

  20. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105(33): 11613–11618

    Article  Google Scholar 

  21. Hossain SS (2009) Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Dissertation, University of Texas at Austin, Austin

  22. Hossain SS, Bazilevs Y, Brasher N, Calo VM, Hughes TJR (2007) Numerical investigation of blood flow and drug transport in patient-specific coronary arteries. In: Proceedings of the 9th US National Congress on computational mechanics, San Francisco

  23. Hossainy SFA, Prabhu S (2008) A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J Biomed Mater Res A 87(2): 487–493. doi:10.1002/jbm.a.31787

    Google Scholar 

  24. Hossainy SFA, Prabhu S, Hossain SS, Davalian D, Wan J (2008) Mathematical modeling of bi-phasic mixed particle drug release from nanoparticles. In: Proceedings of the 8th World Biomaterials Congress, Amsterdam

  25. Huang Y, Rumschitzki D, Chien S, Weinbaum S (1994) A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. J Biomech Eng 116(4): 430–445

    Article  Google Scholar 

  26. Huang ZJ, Tarbell JM (1997) Numerical simulation of mass transfer in porous media of blood vessel walls. Am J Physiol Heart Circ Physiol 273(1): H464–H477

    Google Scholar 

  27. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39-41): 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  28. Hwang C-W, Edelman ER (2002) Arterial ultrastructure influences transport of locally delivered drugs. Circ Res 90(7): 826–832. doi:10.1161/01.res.0000016672.26000.9e

    Article  Google Scholar 

  29. Hwang C-W, Levin AD, Jonas M, Li PH, Edelman ER (2005) Thrombosis modulates arterial drug distribution for drug-eluting stents. Circulation 111(13): 1619–1626. doi:10.1161/01.cir.0000160363.30639.37

    Article  Google Scholar 

  30. Hwang C-W, Wu D, Edelman ER (2001) Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104(5): 600–605. doi:10.1161/hc3101.092214

    Article  Google Scholar 

  31. Jerzy P, Pawel T, Gary SM, Sang-Wook K, Adam W, Lowell S, Mariusz K, Ron W, Akiko M, Neil JW (2006) Intravascular ultrasound assessment of the spatial distribution of ruptured coronary plaques in the left anterior descending coronary artery. Am Heart J 151(4): 898–901

    Article  Google Scholar 

  32. Karner G, Perktold K, Zehentner HP (2001) Computational modeling of macromolecule transport in the arterial wall. Comput Methods Biomech Biomed Eng 4(6): 491–504

    Article  Google Scholar 

  33. Lau J, Kent D, Tatsioni A, Sun Y, Wang C, Chew P, Kupelnick B, Jordan H (2004) Vulnerable plaques: a brief review of the concept and proposed approaches to diagnosis and treatment. U.S. Department of Health and Human Services, Rockville

  34. Lee K, Saidel GM, Penn MS (2008) Permeability change of arterial endothelium is an age-dependent function of lesion size in apolipoprotein e-null mice. Am J Physiol Heart Circ Physiol 295(6): H2273–H2279. doi:10.1152/ajpheart.00242.2008

    Article  Google Scholar 

  35. Levin AD, Vukmirovic N, Hwang C-W, Edelman ER (2004) Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc Natl Acad Sci USA 101(25): 9463–9467. doi:10.1073/pnas.0400918101

    Article  Google Scholar 

  36. Levitt D (2007) Heterogeneity of human adipose blood flow. BMC Clin Pharmacol 7(1): 1. doi:10.1186/1472-6904-7-1

    Article  Google Scholar 

  37. Lovich MA, Creel C, Hong K, Hwang C-W, Edelman ER (2001) Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. J Pharmaceut Sci 90(9): 1324– 1335

    Article  Google Scholar 

  38. Markou CP, Lutostansky EM, Ku DN, Hanson SR (1998) A novel method for efficient drug delivery. Ann Biomed Eng 26(3): 502–511

    Article  Google Scholar 

  39. Meyer G, Merval R, Tedgui A (1996) Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ Res 79(3): 532–540

    Google Scholar 

  40. Moore JA, Ethier CR (1997) Oxygen mass transfer calculations in large arteries. J Biomech Eng 119(4): 469–475

    Article  Google Scholar 

  41. Oshima A, Takeshita S, Kozuma K, Yokoyama N, Motoyoshi K, Ishikawa S, Honda M, Oga K, Ochiai M, Isshiki T (2005) Intravascular ultrasound analysis of the radial artery for coronary artery bypass grafting. Ann Thoracic Surg 79(1): 99–103

    Article  Google Scholar 

  42. Pedersen TR, Kjekshus J, Berg K, Haghfelt T, Faergeman O, Faergeman G, Pyörälä K, Miettinen T, Wilhelmsen L, Olsson AG, Wedel H (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the scandinavian simvastatin survival study (4s). Lancet 344: 1383–1389

    Article  Google Scholar 

  43. Penn MS, Saidel GM, Chisolm GM (1994) Relative significance of endothelium and internal elastic lamina in regulating the entry of macromolecules into arteries in vivo. Circ Res 74(1): 74–82

    Google Scholar 

  44. Pontrelli G, de Monte F (2007) Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int J Heat Mass Transf 50(17-18): 3658–3669

    Article  MATH  Google Scholar 

  45. Pontrelli G, de Monte F (2007) Modelling of mass convection-diffusion in stent-based drug delivery. Paper presented at the XXV Congresso Nazionale UIT sulla Trasmissione del Calore, Trieste

  46. Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J Biomech 38(4): 903–917

    Article  Google Scholar 

  47. Reed ML, Lye WK (2004) Microsystems for drug and gene delivery. Proc IEEE 92(1): 56–75

    Article  Google Scholar 

  48. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JMO, Wun C-C, Davis BR, Braunwald E, The Cholesterol a, RecurrentEvents Trial I (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 335(14): 1001–1009. doi:10.1056/nejm199610033351401

    Article  Google Scholar 

  49. Saltzman WM (2001) Drug delivery. New York, Oxford

    Google Scholar 

  50. Shenoy V, Rosenblatt J (2002) Diffusion of macromolecules in collagen and hyaluronic acid, rigid-rod-flexible polymer, composite matrixes. Macromolecules 28(26): 8751–8758

    Article  Google Scholar 

  51. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ (1995) The West of Scotland Coronary Prevention Study G Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 333(20): 1301–1308. doi:10.1056/nejm199511163332001

    Article  Google Scholar 

  52. Stangeby DK, Ethier CR (2002) Computational analysis of coupled blood-wall arterial LDL transport. J Biomech Eng 124(1): 1–8

    Article  Google Scholar 

  53. Stangeby DK, Ethier CR (2002) Coupled computational analysis of arterial ldl transport—effects of hypertension. Comput Methods Biomech Biomed Eng 5(3): 233–241

    Article  Google Scholar 

  54. Sun N, Wood N, Hughes A, Thom S, Xu X (2006) Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng 34(7): 1119–1128

    Article  Google Scholar 

  55. Sun N, Wood NB, Hughes AD, Thom SAM, Yun Xu X (2007) Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am J Physiol Heart Circ Physiol 292(6): H3148–H3157. doi:10.1152/ajpheart.01281.2006

    Article  Google Scholar 

  56. Tada S, Tarbell JM (2004) Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study. Am J Physiol Heart Circ Physiol 287(2): H905–913. doi:10.1152/ajpheart.00647.2003

    Article  Google Scholar 

  57. Tarbell JM, Lever MJ, Caro CG (1988) The effect of varying albumin concentration of the hydraulic conductivity of the rabbit common carotid artery. Microvasc Res 35(2): 204–220

    Article  Google Scholar 

  58. Tonkin A, Aylward P, Colquhoun D, Glasziou P, Harris P, Hunt D, Keech A, MacMahon S, Magnus P, Newel D, Nestel P, Sharpe N, Shaw J, Simes RJ, Thompson P, Thomson A (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339(19): 1349–1357. doi:10.1056/nejm199811053391902

    Article  Google Scholar 

  59. Truskey GA, Yuan F, Katz DF (2004) Transport phenomena in biological systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  60. Velican D, Velican C (1981) Comparative study on age related changes and atherosclerosis involvement of the coronary arteries of male and female subjects up to 40 years of age. Atherosclerosis 316: 39–50

    Article  Google Scholar 

  61. Yang N, Vafai K (2006) Modeling of low-density lipoprotein (ldl) transport in the artery-effects of hypertension. Int J Heat Mass Transf 49(5–6): 850–867

    Article  MATH  Google Scholar 

  62. Yang NC, Wang HF, Hwang KL, Ho WM (2004) A novel method for determining the blood/gas partition coefficients of inhalation anesthetics to calculate the percentage of loss at different temperatures. J Anal Toxicol 28: 122–127

    Google Scholar 

  63. Yuan F, Chien S, Weinbaum S (1991) A new view of convective-diffusive transport processes in the arterial intima. J Biomech Eng 113(3): 314–329

    Article  Google Scholar 

  64. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4): 502–514

    Google Scholar 

  65. Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29-30): 2943–2959

    Article  MathSciNet  MATH  Google Scholar 

  66. Zunino P (2004) Multidimensional pharmacokinetic models applied to the design of drug-eluting stents. Cardiovas Eng 4(2): 181–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolie S. Hossain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, S.S., Hossainy, S.F.A., Bazilevs, Y. et al. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech 49, 213–242 (2012). https://doi.org/10.1007/s00466-011-0633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0633-2

Keywords

Navigation